scispace - formally typeset
Search or ask a question
Author

Andrew MacFadyen

Bio: Andrew MacFadyen is an academic researcher from New York University. The author has contributed to research in topics: Gamma-ray burst & Jet (fluid). The author has an hindex of 66, co-authored 174 publications receiving 13791 citations. Previous affiliations of Andrew MacFadyen include University of California, Santa Cruz & Institute for Advanced Study.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explore the continued evolution of rotating helium stars, Mα 10 M☉, in which iron-core collapse does not produce a successful outgoing shock but instead forms a black hole of 2-3 Mˉ.
Abstract: Using a two-dimensional hydrodynamics code (PROMETHEUS), we explore the continued evolution of rotating helium stars, Mα 10 M☉, in which iron-core collapse does not produce a successful outgoing shock but instead forms a black hole of 2-3 M☉. The model explored in greatest detail is the 14 M☉ helium core of a 35 M☉ main-sequence star. The outcome is sensitive to the angular momentum. For j16 ≡ j/(1016 cm2 s-1) 3, material falls into the black hole almost uninhibited. No outflows are expected. For j16 20, the infalling matter is halted by centrifugal force outside 1000 km where neutrino losses are negligible. The equatorial accretion rate is very low, and explosive oxygen burning may power a weak equatorial explosion. For 3 j16 20, however, a reasonable value for such stars, a compact disk forms at a radius at which the gravitational binding energy can be efficiently radiated as neutrinos or converted to beamed outflow by magnetohydrodynamical (MHD) processes. These are the best candidates for producing gamma-ray bursts (GRBs). Here we study the formation of such a disk, the associated flow patterns, and the accretion rate for disk viscosity parameter α ≈ 0.001 and 0.1. Infall along the rotational axis is initially uninhibited, and an evacuated channel opens during the first few seconds. Meanwhile the black hole is spun up by the accretion (to a ≈ 0.9), and energy is dissipated in the disk by MHD processes and radiated by neutrinos. For the α = 0.1 model, appreciable energetic outflows develop between polar angles of 30° and 45°. These outflows, powered by viscous dissipation in the disk, have an energy of up to a few times 1051 ergs and a mass ~1 M☉ and are rich in 56Ni. They constitute a supernova-like explosion by themselves. Meanwhile accretion through the disk is maintained for approximately 10-20 s but is time variable (±30%) because of hydrodynamical instabilities at the outer edge in a region where nuclei are experiencing photodisintegration. Because the efficiency of neutrino energy deposition is sensitive to the accretion rate, this instability leads to highly variable energy deposition in the polar regions. Some of this variability, which has significant power at 50 ms and overtones, may persist in the time structure of the burst. During the time followed, the average accretion rate for the standard α = 0.1 and j16 = 10 model is 0.07 M☉ s-1. The total energy deposited along the rotational axes by neutrino annihilation is (1-14) × 1051 ergs, depending upon the evolution of the Kerr parameter and uncertain neutrino efficiencies. Simulated deposition of energy in the polar regions, at a constant rate of 5 × 1050 ergs s-1 per pole, results in strong relativistic outflow jets beamed to about 1% of the sky. These jets may be additionally modulated by instabilities in the sides of the "nozzle" through which they flow. The jets blow aside the accreting material, remain highly focused, and are capable of penetrating the star in ~10 s. After the jet breaks through the surface of the star, highly relativistic flow can emerge. Because of the sensitivity of the mass ejection and jets to accretion rate, angular momentum, and disk viscosity, and the variation of observational consequences with viewing angle, a large range of outcomes is possible, ranging from bright GRBs like GRB 971214 to faint GRB-supernovae like SN 1998bw. X-ray precursors are also possible as the jet first breaks out of the star. While only a small fraction of supernovae make GRBs, we predict that collapsars will always make supernovae similar to SN 1998bw. However, hard, energetic GRBs shorter than a few seconds will be difficult to produce in this model and may require merging neutron stars and black holes for their explanation.

2,209 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the possible production of supernovae and a variety of high-energy transients by black hole formation in massive stars endowed with rotation: the "collapsar model."
Abstract: We continue our study of the possible production of supernovae and a variety of high-energy transients by black hole formation in massive stars endowed with rotation: the "collapsar model." The black hole may form either promptly, since a successful outgoing shock fails to be launched by the collapsed iron core (collapsar Type I), or, in a mild explosion, by fallback (collapsar Type II). In the latter case, the inner layers of the star initially move outward but lack adequate momentum to eject all the matter exterior to the young neutron star. Over a period of minutes to hours, ~0.1-5 M☉ falls back onto the collapsed remnant, turning it into a black hole and establishing an accretion disk. The accretion rate, ~0.001-0.01 M☉ s-1, is inadequate to produce a jet mediated by neutrino annihilation but is similar to what has been invoked in magnetohydrodynamic (MHD) models for gamma-ray bursts (GRBs). This fallback is modeled in detail for two 25 M☉ progenitors using two different one-dimensional hydrodynamics codes, one Lagrangian and one Eulerian. The production and consequences of jets are then explored in both sorts of collapsars. Justification is given for assuming that the jet power is a constant times the mass accretion rate, c2, and the consequences of = 0.001 and 0.01 are explored. Adopting an initial collimation half-angle of 10°, the opening of the jet as it propagates through the exploding star is strongly influenced not only by the jet's kinetic energy but also by its initial pressure and the stellar structure. Cold jets tend to stay collimated and become even more so, sometimes having an angle of only a few degrees when they reach the surface. Jets having higher internal pressure than the stellar material through which they pass, or less initial collimation, spread out and tend to make energetic, asymmetric supernovae accompanied, in helium stars, by weak GRBs. SN 1998bw may have been such an event, and other events having energies between that of ordinary GRBs and GRB 980425 await discovery. In supergiant stars, shock breakout also produces bright X-ray transients that might be a diagnostic of the model, but even the most powerful jets (equivalent isotropic energy 1054 ergs) will not produce a GRB in a red supergiant. For such Type II supernovae the limiting Lorentz factor is Γ ≈ 2. Type II collapsars should be more frequent than Type I and may power the most common form of gamma-ray transient in the universe. However, the GRBs seen by BATSE are, for the most part, too brief to be Type II collapsars. Those are still attributed to prompt black hole formation. Even there though, the diverse energies and time structure reflect chiefly the viewing angle and the variable collimation of the jet inside the star, not a highly variable "central engine." Indeed, collapsar-induced transients may all have a common total energy in the range 1051-1052 ergs.

727 citations

Journal ArticleDOI
06 Oct 2005-Nature
TL;DR: In this article, the X-ray afterglow of a short-hard burst, GRB 050709, was found to be associated with a star-forming galaxy at redshift z = 0.160.
Abstract: The final chapter in the long-standing mystery of the γ-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.

545 citations

Journal ArticleDOI
TL;DR: In this article, the relativistic jets are collimated by their passage through the stellar mantle, and the mixing instability is mainly responsible for the variable Lorentz factor needed in the internal shock model and for the complex light curves seen in many GRBs.
Abstract: We examine the propagation of two-dimensional relativistic jets through the stellar progenitor in the collapsar model for gamma-ray bursts (GRBs). Each jet is parameterized by a radius where it is introduced and by its initial Lorentz factor, opening angle, power, and internal energy. In agreement with previous studies, we find that relativistic jets are collimated by their passage through the stellar mantle. Starting with an initial half-angle of up to 20°, they emerge with half-angles that, though variable with time, are around 5°. Interaction of these jets with the star and their own cocoons also causes mixing that sporadically decelerates the flow. We speculate that this mixing instability is chiefly responsible for the variable Lorentz factor needed in the internal shock model and for the complex light curves seen in many GRBs. In all cases studied, the jet is shocked deep inside the star following a brief period of adiabatic expansion. This shock converts most of the jet's kinetic energy into internal energy, so even initially "cold" jets become hot after going a short distance. The jet that finally emerges from the star thus has a moderate Lorentz factor, modulated by mixing, and a very large internal energy. In a second series of calculations, we follow the escape of that sort of jet. Conversion of the remaining internal energy gives terminal Lorentz factors along the axis of approximately 150 for the initial conditions chosen. Because of the large ratio of internal to kinetic energy in both the jet (≥80%) and its cocoon, the opening angle of the final jet is significantly greater than at breakout. A small amount of material emerges at large angles, but with a Lorentz factor still sufficiently large to make a weak GRB. This leads us to propose a "unified model" in which a variety of high-energy transients, ranging from X-ray flashes to "classic" GRBs, may be seen depending on the angle at which a standard collapsar is observed. We also speculate that the breakout of a relativistic jet and its collision with the stellar wind will produce a brief transient with properties similar to the class of "short-hard" GRBs. Implications of our calculations for GRB light curves, the luminosity-variability relation, and the GRB-supernova association are also discussed.

441 citations

Journal ArticleDOI
21 Dec 2006-Nature
TL;DR: In this paper, the authors report optical observations of GRB 060614 (duration ~100 s) that rule out the presence of an associated supernova, and also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of long-lived GRB progenitor may be required.
Abstract: Over the past decade, our physical understanding of gamma-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (≳2 s) GRBs are associated with the explosive deaths of massive stars ('collapsars', ref. 1), which produce accompanying supernovae; the short-duration (≲2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration ~100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of 'engine', as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required.

403 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1195 moreInstitutions (139)
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times {10}^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times {10}^{-15}$ and $+7\times {10}^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

2,633 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution.
Abstract: We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main sequence evolution to the onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve treatment of mass accretion, giving more accurate and robust near-surface profiles. A new MESA capability to calculate weak reaction rates "on-the-fly" from input nuclear data allows better simulation of accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a profound enabling capability for accelerating MESA's development.

2,166 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss how metallicity affects the evolution and final fate of massive stars, and derive the relative populations of stellar populations as a function of metallity.
Abstract: How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

2,007 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics, and focused on their post-helium-burning evolution.
Abstract: amount of energy, a tiny fraction of which is sufficient to explode the star as a supernova. The authors examine our current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics. Emphasis is placed upon their post-helium-burning evolution. Current views regarding the supernova explosion mechanism are reviewed, and the hydrodynamics of supernova shock propagation and ‘‘fallback’’ is discussed. The calculated neutron star masses, supernova light curves, and spectra from these model stars are shown to be consistent with observations. During all phases, particular attention is paid to the nucleosynthesis of heavy elements. Such stars are capable of producing, with few exceptions, the isotopes between mass 16 and 88 as well as a large fraction of still heavier elements made by the r and p processes.

1,981 citations