scispace - formally typeset
Search or ask a question
Author

Andrew McGordon

Bio: Andrew McGordon is an academic researcher from University of Warwick. The author has contributed to research in topics: Battery (electricity) & Electric vehicle. The author has an hindex of 21, co-authored 83 publications receiving 1326 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that in addition to state of charge, internal temperature and state of health, the time period between the removal of an electrical load and the impedance measurement affects the results.

166 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of international standards and regulations for the characterisation and electrical testing of lithium-ion cells, specifically for high-power automotive and grid applications, is presented.

160 citations

Journal ArticleDOI
TL;DR: It is shown that the resistance estimated from any technique can be identified – to a high level of confidence – from EIS by matching their timescales, given that EIS is a perturbative characterisation technique, employing a spectrum of perturbation frequencies.
Abstract: The power capability of a lithium ion battery is governed by its resistance, which changes with battery state such as temperature, state of charge, and state of health. Characterizing resistance, therefore, is integral in defining battery operational boundaries, estimating its performance and tracking its state of health. There are many techniques that have been employed for estimating the resistance of a battery, these include: using DC pulse current signals such as pulse power tests or Hybrid Pulse Power Characterization (HPPC) tests; using AC current signals, i.e., electrochemical impedance spectroscopy (EIS) and using pulse-multisine measurements. From existing literature, these techniques are perceived to yield differing values of resistance. In this work, we apply these techniques to 20 Ah LiFePO4/C6 pouch cells and use the results to compare the techniques. The results indicate that the computed resistance is strongly dependent on the timescales of the technique employed and that when timescales match, the resistances derived via different techniques align. Furthermore, given that EIS is a perturbative characterisation technique, employing a spectrum of perturbation frequencies, we show that the resistance estimated from any technique can be identified – to a high level of confidence – from EIS by matching their timescales.

129 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new test methodology to study true OCV hysteresis, which considers the coupling of variables that show an apparent increase in hyteresis.

117 citations

Journal ArticleDOI
TL;DR: The proposed EMS is formulated over driving information and vehicle trip energy and not over vehicle speed profiles, as usually seen, and its performance metrics compared with a conventional EMS for a full parallel PHEV was found to be superior.
Abstract: This paper proposes a blended rule-based energy management system (EMS) for a plug-in hybrid electric vehicle (PHEV). The proposed EMS is formulated over driving information and vehicle trip energy and not over vehicle speed profiles, as usually seen. The proposed EMS design structure and strategy is described followed by its evaluation. This is the first time a platform for a rule-based acausal EMS has been designed. Performance metrics such as the fuel economy and the number of engine stop–starts are compared with conventional rule-based EMS over real-world destinations with uncertain trip demand. Its performance metrics compared with a conventional EMS for a full parallel PHEV was found to be superior in this paper.

85 citations


Cited by
More filters
01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the battery state of charge estimation and its management system for the sustainable future electric vehicles (EVs) applications is presented, which can guarantee a reliable and safe operation and assess the battery SOC.
Abstract: Due to increasing concerns about global warming, greenhouse gas emissions, and the depletion of fossil fuels, the electric vehicles (EVs) receive massive popularity due to their performances and efficiencies in recent decades. EVs have already been widely accepted in the automotive industries considering the most promising replacements in reducing CO2 emissions and global environmental issues. Lithium-ion batteries have attained huge attention in EVs application due to their lucrative features such as lightweight, fast charging, high energy density, low self-discharge and long lifespan. This paper comprehensively reviews the lithium-ion battery state of charge (SOC) estimation and its management system towards the sustainable future EV applications. The significance of battery management system (BMS) employing lithium-ion batteries is presented, which can guarantee a reliable and safe operation and assess the battery SOC. The review identifies that the SOC is a crucial parameter as it signifies the remaining available energy in a battery that provides an idea about charging/discharging strategies and protect the battery from overcharging/over discharging. It is also observed that the SOC of the existing lithium-ion batteries have a good contribution to run the EVs safely and efficiently with their charging/discharging capabilities. However, they still have some challenges due to their complex electro-chemical reactions, performance degradation and lack of accuracy towards the enhancement of battery performance and life. The classification of the estimation methodologies to estimate SOC focusing with the estimation model/algorithm, benefits, drawbacks and estimation error are extensively reviewed. The review highlights many factors and challenges with possible recommendations for the development of BMS and estimation of SOC in next-generation EV applications. All the highlighted insights of this review will widen the increasing efforts towards the development of the advanced SOC estimation method and energy management system of lithium-ion battery for the future high-tech EV applications.

1,150 citations

Journal ArticleDOI
TL;DR: The technical aspect of automated driving is surveyed, with an overview of available datasets and tools for ADS development and many state-of-the-art algorithms implemented and compared on their own platform in a real-world driving setting.
Abstract: Automated driving systems (ADSs) promise a safe, comfortable and efficient driving experience. However, fatalities involving vehicles equipped with ADSs are on the rise. The full potential of ADSs cannot be realized unless the robustness of state-of-the-art is improved further. This paper discusses unsolved problems and surveys the technical aspect of automated driving. Studies regarding present challenges, high-level system architectures, emerging methodologies and core functions including localization, mapping, perception, planning, and human machine interfaces, were thoroughly reviewed. Furthermore, many state-of-the-art algorithms were implemented and compared on our own platform in a real-world driving setting. The paper concludes with an overview of available datasets and tools for ADS development.

851 citations

Journal ArticleDOI
01 Aug 2019
TL;DR: Robust model-based charging optimisation strategies are identified as key to enabling fast charging in all conditions, with a particular focus on techniques capable of achieving high speeds and good temperature homogeneities.
Abstract: In the recent years, lithium-ion batteries have become the battery technology of choice for portable devices, electric vehicles and grid storage. While increasing numbers of car manufacturers are introducing electrified models into their offering, range anxiety and the length of time required to recharge the batteries are still a common concern. The high currents needed to accelerate the charging process have been known to reduce energy efficiency and cause accelerated capacity and power fade. Fast charging is a multiscale problem, therefore insights from atomic to system level are required to understand and improve fast charging performance. The present paper reviews the literature on the physical phenomena that limit battery charging speeds, the degradation mechanisms that commonly result from charging at high currents, and the approaches that have been proposed to address these issues. Special attention is paid to low temperature charging. Alternative fast charging protocols are presented and critically assessed. Safety implications are explored, including the potential influence of fast charging on thermal runaway characteristics. Finally, knowledge gaps are identified and recommendations are made for the direction of future research. The need to develop reliable onboard methods to detect lithium plating and mechanical degradation is highlighted. Robust model-based charging optimisation strategies are identified as key to enabling fast charging in all conditions. Thermal management strategies to both cool batteries during charging and preheat them in cold weather are acknowledged as critical, with a particular focus on techniques capable of achieving high speeds and good temperature homogeneities.

712 citations

Journal ArticleDOI
01 Aug 2019
TL;DR: A comprehensive review on the key issues of the battery degradation among the whole life cycle is provided in this paper, where the battery internal aging mechanisms are reviewed considering different anode and cathode materials for better understanding the battery fade characteristic.
Abstract: The lithium ion battery is widely used in electric vehicles (EV) The battery degradation is the key scientific problem in battery research The battery aging limits its energy storage and power output capability, as well as the performance of the EV including the cost and life span Therefore, a comprehensive review on the key issues of the battery degradation among the whole life cycle is provided in this paper Firstly, the battery internal aging mechanisms are reviewed considering different anode and cathode materials for better understanding the battery fade characteristic Then, to get better life performance, the influence factors affecting battery life are discussed in detail from the perspectives of design, production and application Finally, considering the difference between the cell and system, the battery system degradation mechanism is discussed

695 citations