scispace - formally typeset
Search or ask a question
Author

Andrew P. Beardmore

Other affiliations: Keele University
Bio: Andrew P. Beardmore is an academic researcher from University of Leicester. The author has contributed to research in topics: Gamma-ray burst & Afterglow. The author has an hindex of 30, co-authored 84 publications receiving 4111 citations. Previous affiliations of Andrew P. Beardmore include Keele University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple function, dependent on the product of the atomic hydrogen column density, N(HI), and dust extinction, E(B-V), was derived to estimate the variation of the molecular hydrogen column densities over the sky.
Abstract: Prediction of the soft X-ray absorption along lines of sight through our Galaxy is crucial for understanding the spectra of extragalactic sources, but requires a good estimate of the foreground column density of photoelectric absorbing species. Assuming uniform elemental abundances this reduces to having a good estimate of the total hydrogen column density, N(Htot)=N(HI)+2N(H2). The atomic component, N(HI), is reliably provided using the mapped 21 cm radio emission but estimating the molecular hydrogen column density, N(H2), expected for any particular direction, is difficult. The X-ray afterglows of GRBs are ideal sources to probe X-ray absorption in our Galaxy because they are extragalactic, numerous, bright, have simple spectra and occur randomly across the entire sky. We describe an empirical method, utilizing 493 afterglows detected by the Swift XRT, to determine N(Htot) through the Milky Way which provides an improved estimate of the X-ray absorption in our Galaxy and thereby leads to more reliable measurements of the intrinsic X-ray absorption and, potentially, other spectral parameters, for extragalactic X-ray sources. We derive a simple function, dependent on the product of the atomic hydrogen column density, N(HI), and dust extinction, E(B-V), which describes the variation of the molecular hydrogen column density, N(H2), of our Galaxy, over the sky. Using the resulting N(Htot) we show that the dust-to-hydrogen ratio is correlated with the carbon monoxide emission and use this ratio to estimate the fraction of material which forms interstellar dust grains. Our resulting recipe represents a significant revision in Galactic absorption compared to previous standard methods, particularly at low Galactic latitudes.

661 citations

Journal ArticleDOI
Neil Gehrels1, Craig L. Sarazin2, P. T. O'Brien3, Bing Zhang4, L. M. Barbier1, Scott Barthelmy1, A. J. Blustin5, David N. Burrows6, J. K. Cannizzo1, J. K. Cannizzo7, Jay Cummings1, Jay Cummings8, Michael R. Goad3, Stephen T. Holland9, Stephen T. Holland1, Cheryl Hurkett3, J. A. Kennea6, Andrew J. Levan3, C. B. Markwardt10, C. B. Markwardt1, Keith O. Mason5, Peter Mészáros6, M. J. Page5, David Palmer11, Evert Rol3, T. Sakamoto8, T. Sakamoto1, Richard Willingale3, Lorella Angelini1, Lorella Angelini7, Andrew P. Beardmore3, Patricia T. Boyd7, Patricia T. Boyd1, A. A. Breeveld5, Sergio Campana12, M. M. Chester6, Guido Chincarini13, Guido Chincarini14, L. R. Cominsky15, Giancarlo Cusumano14, M. de Pasquale5, Edward E. Fenimore11, Paolo Giommi, Caryl Gronwall6, Dirk Grupe6, Joanne E. Hill6, D. Hinshaw1, Jens Hjorth16, D. Hullinger10, D. Hullinger1, Kevin Hurley17, Sylvio Klose, Shiho Kobayashi6, Chryssa Kouveliotou18, Hans A. Krimm1, Hans A. Krimm9, Vanessa Mangano12, F. E. Marshall1, Katherine E. McGowan5, A. Moretti12, Richard Mushotzky1, Kazuhiro Nakazawa, Jay P. Norris1, John A. Nousek6, J. P. Osborne3, K. L. Page3, A. M. Parsons1, Sandeep K. Patel9, M. Perri, T. S. Poole5, P. Romano12, P. W. A. Roming6, Stuart Rosen5, G. Sato, Patricia Schady5, Alan P. Smale, Jesper Sollerman19, R. L. C. Starling20, Martin Still9, Martin Still1, Masaya Suzuki21, Gianpiero Tagliaferri12, Tadayuki Takahashi, Makoto Tashiro21, Jack Tueller1, Alan A. Wells3, Nicholas E. White1, Ralph A. M. J. Wijers20 
06 Oct 2005-Nature
TL;DR: In this article, the authors reported the detection of the X-ray afterglow from the short burst GRB 050509B and its location on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225.
Abstract: Gamma-ray bursts (GRBs) are either ‘long and soft’, or ‘short and hard’. The long-duration type leave a strong afterglow and have been extensively studied. So we have a good idea of what causes them: explosions of massive stars in distant star-forming galaxies. Short GRBs, with no strong afterglow, were harder to pin down. The Swift satellite, launched last November, is designed to study bursts as soon as they happen. Having shown its worth with long GRBs (reported in the 18 August issue of Nature), Swift has now bagged a short burst, GRB 050509B, precisely measured its location and detected the X-ray afterglow. Four papers this week report on this and another recent short burst. Now, over 20 years after they were first recognized, the likely origin of the short GRBs is revealed as a merger between neutron stars of a binary system and the instantaneous production of a black hole. Gamma-ray bursts (GRBs) come in two classes1: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z ≈ 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars2. In contrast, no short GRB had been accurately (< 10″) and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from—and the localization of—the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect3,4 if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.

590 citations

Journal ArticleDOI
16 Sep 2005-Science
TL;DR: Two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst, imply that the central engines of the bursts have long periods of activity.
Abstract: Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

561 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present observations of GRB 060124, the first event for which both the prompt and the afterglow emission could be observed simultaneously and in their entirety by the three Swift instruments.
Abstract: We present observations of GRB 060124, the first event for which both the prompt and the afterglow emission could be observed simultaneously and in their entirety by the three Swift instruments. Indeed, Swift-BAT triggered on a precursor " 570 s before the main burst peak, and this allowed Swift to repoint the narrow field instruments to the burst position " 350 s before the main burst occurred. GRB 060124 also triggered Konus-Wind, which observed the prompt emission in a harder gamma-ray band (up to 2 MeV). Thanks to these exceptional circumstances, the temporal and spectral properties of the prompt emission can be studied in the optical, X-ray and gamma-ray ranges. While the X-ray emission (0.2-10 keV) clearly tracks the gamma-ray burst, the optical component follows a di! erent pattern, likely indicating a di! erent origin, possibly the onset of external shocks. The prompt GRB spectrum shows significant spectral evolution, with both the peak energy and the spectral index varying. As observed in several long GRBs, significant lags are measured between the hard- and low-energy components, showing that this behaviour extends over 3 decades in energy. The GRB peaks are also much broader at soft energies. This is related to the temporal evolution of the spectrum, and can be accounted for by assuming that the electron spectral index softened with time. The burst energy (Eiso " 5 # 10 53 erg) and average peak energy (Ep " 300 keV) make GRB060124 consistent with theAmati relation. TheX-ray afterglow ischaracterized by adecay which presents a break at tb " 10 5 s.

259 citations

Journal ArticleDOI
TL;DR: The 1SXPS (Swift-XRT Point Source) catalog of 151,524 X-ray point-sources detected by the Swift XRT in 8 years of operation is presented in this paper.
Abstract: We present the 1SXPS (Swift-XRT Point Source) catalog of 151,524 X-ray point-sources detected by the Swift-XRT in 8 years of operation. The catalog covers 1905 square degrees distributed approximately uniformly on the sky. We analyze the data in two ways. First we consider all observations individually, for which we have a typical sensitivity of 3 10 13 erg cm 2 s 1 (0.3{10 keV). Then we co-add all data covering the same location on the sky: these images have a typical sensitivity of 9 10 14 erg cm 2 s 1 (0.3{10 keV). Our sky coverage is nearly 2.5 times that of 3XMM-DR4, although the catalog is a factor of 1.5 less sensitive. The median position error is 5.5 00 (90% condence), including systematics. Our source detection method improves on that used in previous XRT catalogs and we report > 68; 000 new X-ray sources. The goals and observing strategy of the Swift satellite allow us to probe source variability on multiple timescales, and we nd 30; 000 variable objects in our catalog. For every source we give positions, uxes, time series (in four energy bands and two hardness ratios), estimates of the spectral properties, spectra and spectral ts for the brightest sources, and variability probabilities in multiple energy bands and timescales. Subject headings: Catalogs { Surveys { X-rays: general { Methods: data analysis

182 citations


Cited by
More filters
Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations

Journal ArticleDOI
01 Jan 2005
TL;DR: The Swift Gamma-Ray Explorer (XRT) as mentioned in this paper uses a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23. 6 arcminutes, and angular resolution of 18 arcseconds.
Abstract: he Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of gamma-ray bursts (GRBs) and GRB afterglows. The X-ray telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 s of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2–10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2×10−14 erg cm−2 s−1 in 104 s. The instrument is designed to provide automated source detection and position reporting within 5 s of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks.

2,253 citations

Journal ArticleDOI
TL;DR: The Swift Gamma-Ray Explorer (XRT) as mentioned in this paper uses a mirror set built for JET-X and an XMM/EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of > 120 cm^2 at 1.5 keV, field of view of 23.6 x23.6 arcminutes, and angular resolution of 18 arcseconds (HPD).
Abstract: The Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of Gamma-Ray Bursts (GRBs) and GRB afterglows. The X-ray Telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM/EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of > 120 cm^2 at 1.5 keV, field of view of 23.6 x 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10^-14 erg cm^-2 s^-1 in 10^4 seconds. The instrument is designed to provide automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks.

2,104 citations

15 Mar 1979
TL;DR: In this article, the experimental estimation of parameters for models can be solved through use of the likelihood ratio test, with particular attention to photon counting experiments, and procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply.
Abstract: Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

1,748 citations