scispace - formally typeset
Search or ask a question
Author

Andrew P. McMahon

Bio: Andrew P. McMahon is an academic researcher from University of Southern California. The author has contributed to research in topics: Sonic hedgehog & Hedgehog signaling pathway. The author has an hindex of 162, co-authored 415 publications receiving 90650 citations. Previous affiliations of Andrew P. McMahon include University of Texas Southwestern Medical Center & Hoffmann-La Roche.


Papers
More filters
Journal ArticleDOI
TL;DR: In their screen for mutations that disrupt the Drosophila larval body plan, these authors identified several that cause the duplication of denticles and an accompanying loss of naked cuticle, characteristic of the posterior half of each segment.
Abstract: Since their isolation in the early 1990s, members of the Hedgehog family of intercellular signaling proteins have come to be recognized as key mediators of many fundamental processes in embryonic development. Their activities are central to the growth, patterning, and morphogenesis of many different regions within the body plans of vertebrates and insects, and most likely other invertebrates. In some contexts, Hedgehog signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens regulating cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hedgehog proteins raise many intriguing questions about their mode of operation. How do these proteins move between or across fields of cells? How are their activities modulated and transduced? What are their intracellular targets? In this article we review some well-established paradigms of Hedgehog function inDrosophila and vertebrate development and survey the current understanding of the synthesis, modification, and transduction of Hedgehog proteins. Embryological studies over much of the last century that relied primarily on the physical manipulation of cells within the developing embryo or fragments of the embryo in culture, provided many compelling examples for the primacy of cell–cell interactions in regulating invertebrate and vertebrate development. The subsequent identification of many of the signaling factors that mediate cellular communication has led to two general conclusions. First, although there are many important signals, most of these fall into a few large families of secreted peptide factors: theWnt (Wodarz and Nusse 1998), fibroblast growth factor (Szebenyi and Fallon 1999), TGFsuperfamily (Massague and Chen 2000), plateletderived growth factor (Betsholtz et al. 2001), ephrin (Bruckner and Klein 1998), and Hedgehog families. Second, parallel studies in invertebrate and vertebrate systems have shown that although the final outcome might look quite different (e.g., a fly vs. a mouse), there is a striking conservation in the deployment of members of the same signaling families to regulate development of these seemingly quite different organisms. This review focuses on one of the most intriguing examples of this phenomenon, that of the Hedgehog family. As with many of the advances in our understanding of the genetic regulation of animal development, hedgehog (hh) genes owe their discovery to the pioneering work of Nusslein-Volhard and Wieschaus (1980). In their screen for mutations that disrupt the Drosophila larval body plan, these authors identified several that cause the duplication of denticles (spiky cuticular processes that decorate the anterior half of each body segment) and an accompanying loss of naked cuticle, characteristic of the posterior half of each segment (see Fig. 1). The ensuing appearance of a continuous lawn of denticles projecting from the larval cuticle evidently suggested the spines of a hedgehog to the discoverers, hence the origin of the name of one of these genes. Other loci identified by mutants with this phenotype included armadillo, gooseberry, and wingless (wg). In contrast, animals mutant for the aptly named naked gene showed the converse phenotype, with denticle belts replaced by naked cuticle in every segment. On the basis of these mutant phenotypes, Nusslein-Volhard and Wieschaus (1980) proposed that these so-called segment-polarity genes regulate pattern within each of the segments of the larval body, individual genes acting within distinct subregions of the emerging segmental pattern. The first important breakthrough in unraveling how segment-polarity genes act came in the mid-1980s with the cloning of two members of the class, wingless and engrailed (en). Wg was shown to be the ortholog of the vertebrate proto-oncogene int1 (subsequently renamed Wnt1 and the founder member of the Wnt family of secreted peptide factors; Rijsewijk et al. 1987), whereas the sequence of en revealed that it encodes a homeodomaincontaining transcription factor (Fjose et al. 1985; Poole et al. 1985). Intriguingly, the two genes were found to be expressed in adjacent narrow stripes of cells in each segment (Martinez Arias et al. 1988). A close spatial relationship between Wnt1 and En expression domains was also reported in the primordial midbrain and hindbrain of the vertebrate embryo (McMahon et al. 1992). AnalyWe dedicate this review to the memory of our dear friend and colleague Rosa Beddington, whose encouragement led to our initial collaboration. 3Corresponding authors. E-MAIL p.w.ingham@sheffield.ac.uk; FAX 0114-222-288. E-MAIL amcmahon@biosun.harvard.edu; FAX (617) 496-3763. Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/ gad.938601.

2,919 citations

Journal ArticleDOI
31 Dec 1993-Cell
TL;DR: Three members of a mouse gene family related to the Drosophila segment polarity gene, hedgehog (hh), are identified and it is suggested that Shh may play a role in the normal inductive interactions that pattern the ventral CNS.

2,259 citations

Journal ArticleDOI
TL;DR: Analysis of an Ihh null mutant and results suggest a model in which Ihh coordinates diverse aspects of skeletal morphogenesis through PTHrP-dependent and independent processes.
Abstract: The mechanisms that control cell proliferation and cell differentiation during morphogenesis of the endochondral skeleton of vertebrates are poorly understood. Indian hedgehog (Ihh) signaling from prehypertrophic chondrocytes has been implicated in the control of chondrocyte maturation by way of feedback control of a second secreted factor parathyroid hormone-related peptide (PTHrP) at the articular surfaces. Analysis of an Ihh null mutant suggests a more extensive role for Ihh in skeletal development. Mutants display markedly reduced chondrocyte proliferation, maturation of chondrocytes at inappropriate position, and a failure of osteoblast development in endochondral bones. Together, the results suggest a model in which Ihh coordinates diverse aspects of skeletal morphogenesis through PTHrP-dependent and independent processes.

1,657 citations

Journal ArticleDOI
21 Sep 1990-Cell
TL;DR: The Wnt-1 (int-1) proto-oncogene, which encodes a putative signaling molecule, is expressed exclusively in the developing central nervous system and adult testes and its normal role is in determination or subsequent development of a specific region of thecentral nervous system.

1,526 citations

Journal ArticleDOI
TL;DR: Findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation and broaden the knowledge of the functions Wnt proteins have at various stages of skeletogenesis.

1,446 citations


Cited by
More filters
Journal ArticleDOI
30 Nov 2007-Cell
TL;DR: It is demonstrated that iPS cells can be generated from adult human fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc.

18,175 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations

Journal ArticleDOI
Jean Paul Thiery1
TL;DR: Epithelial–mesenchymal transition provides a new basis for understanding the progression of carcinoma towards dedifferentiated and more malignant states.
Abstract: Without epithelial–mesenchymal transitions, in which polarized epithelial cells are converted into motile cells, multicellular organisms would be incapable of getting past the blastula stage of embryonic development. However, this important developmental programme has a more sinister role in tumour progression. Epithelial–mesenchymal transition provides a new basis for understanding the progression of carcinoma towards dedifferentiated and more malignant states.

6,362 citations

01 Mar 2007
TL;DR: An initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI is described.
Abstract: Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.

5,467 citations