scispace - formally typeset
Search or ask a question
Author

Andrew R. Weily

Other affiliations: Macquarie University
Bio: Andrew R. Weily is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Antenna measurement & Antenna (radio). The author has an hindex of 29, co-authored 97 publications receiving 2956 citations. Previous affiliations of Andrew R. Weily include Macquarie University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a compact U-slot microstrip patch antenna with reconfigurable polarization is proposed for wireless local area network (WLAN) applications, which enables switching between linear and circular polarization by using a PIN diode and a capacitor located on the U- slot.
Abstract: A compact U-slot microstrip patch antenna with reconfigurable polarization is proposed for wireless local area network (WLAN) applications. PIN diodes are appropriately positioned to change the length of the U-slot arms, which alters the antenna's polarization state. Two antenna prototypes with identical dimensions are designed, fabricated and measured. The first antenna prototype enables switching between linear and circular polarization by using a PIN diode and a capacitor located on the U-slot. The second antenna prototype uses two PIN diodes to switch between the two circular polarization senses. A good impedance match (S11 ≤-10 dB) for both linear and circular polarization is achieved from 5.725 to 5.85 GHz, a band typically used for WLAN applications, and the 3 dB axial ratio bandwidth is greater than 2.8%. Details of the simulated and measured reflection coefficient, axial ratio, gain and radiation patterns are presented.

213 citations

Journal ArticleDOI
TL;DR: In this article, a resonator antenna made from a complex artificial surface and a metallic ground plane is described, which is realized using a woodpile electromagnetic bandgap (EBG) material, and the antenna has a frequency dependent reflection plane location.
Abstract: A resonator antenna made from a complex artificial surface and a metallic ground plane is described. The complex surface is realized using a woodpile electromagnetic bandgap (EBG) material, which is shown to have a frequency dependent reflection plane location. A highly directive radiation pattern is created due to the angle-dependent attenuation of the resonator antenna coupling to free space. The antenna has the advantages of low height, low loss, and low sidelobes. It is shown that the directivity can be varied over a fixed range by changing the aperture size of the device, with the maximum directivity determined by both the feed element and EBG material properties. The complete bandgap for the woodpile EBG material is confirmed from a band diagram, and its properties as a complex surface are investigated through transmission calculation and measurement. The design of the antenna is described, and two means of exciting the resonator, a microstrip patch and a double slot, are investigated. Theoretical results for these two antennas are calculated the using finite-difference time-domain and are shown to be in good agreement with measured results.

206 citations

Journal ArticleDOI
TL;DR: In this paper, a new compact pattern reconfigurable U-slot antenna is presented, which can operate in either monopolar patch or normal patch mode in similar frequency ranges, and its radiation pattern can be switched between conical and boresight patterns electrically.
Abstract: A new compact pattern reconfigurable U-slot antenna is presented The antenna consists of a U-slot patch and eight shorting posts Each edge of the square patch is connected to two shorting posts via PIN diodes By switching between the different states of the PIN diodes, the proposed antenna can operate in either monopolar patch or normal patch mode in similar frequency ranges Therefore, its radiation pattern can be switched between conical and boresight patterns electrically In addition, the plane with the maximum power level of the conical pattern can be changed between two orthogonal planes Owing to a novel design of the switch geometry, the antenna does not need dc bias lines The measured overlapping impedance bandwidth (|S11| <; -10 dB) of the two modes is 66% with a center frequency of 532 GHz The measured radiation patterns agree well with simulated results The antennas are incorporated in a 2 × 2 multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system to demonstrate the improvement in system capacity In the real-time MIMO-OFDM channel measurement, it is shown that compared to omnidirectional antennas, the pattern reconfigurable antennas can enhance the system capacity, with 17% improvement in a line-of-sight (LOS) scenario and 12% in a non-LOS (NLOS) scenario at a signal-to-noise ratio (SNR) of 10 dB

198 citations

Journal ArticleDOI
TL;DR: In this article, a high-gain partially reflective surface (PRS) antenna with a reconfigurable operating frequency is presented, where an array of phase agile reflection cells on a thin substrate above the ground plane of the resonator antenna, where the reflection phase of each cell is controlled by the bias voltage applied to a pair of varactor diodes.
Abstract: A high-gain partially reflective surface (PRS) antenna with a reconfigurable operating frequency is presented. The operating frequency is electronically tuned by incorporating an array of phase agile reflection cells on a thin substrate above the ground plane of the resonator antenna, where the reflection phase of each cell is controlled by the bias voltage applied to a pair of varactor diodes. The new configuration enables continuous tuning of the antenna from 5.2 GHz to 5.95 GHz using commercially available varactor diodes, thus covering frequencies typically used for WLAN applications. Both the PRS and phase agile cell are analyzed, and theoretical and measured results for gain, tuning range, and radiation patterns of the reconfigurable antenna are described. The effect of the varactor diode series resistance on the performance of the antenna is also reported.

171 citations

Journal ArticleDOI
TL;DR: In this article, a fixed-frequency electronically-steerable one-dimensional (1-D) leaky-wave antenna is presented, which is based on a parallel-plate waveguide loaded with a planar partially reflective surface and a tunable high impedance surface.
Abstract: A novel fixed-frequency electronically-steerable one-dimensional (1-D) leaky-wave antenna is presented. The antenna is based on a parallel-plate waveguide loaded with a planar partially reflective surface and a tunable high impedance surface (HIS), which creates a 1-D Fabry-Perot leaky-waveguide. The tunable HIS consists of printed patches loaded with varactor diodes that allow the electronic tuning of the cavity resonance condition. Using a simple Transverse Equivalent Network, it is theoretically shown how the variation of the varactors' junction capacitance allows the scanning of the antenna pointing angle from broadside towards the endfire direction at a fixed frequency. Experimental results of an antenna prototype operating at 5.6 GHz are reported, demonstrating that the new reconfigurable leaky-wave antenna can provide electronic beam scanning in an angular range from 9 $^{\circ}$ to 30 $^{\circ}$

154 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of emerging technologies and system research that might lead to ubiquitous THz communication systems in the future is given.
Abstract: The increasing demand of unoccupied and unregulated bandwidth for wireless communication systems will inevitably lead to the extension of operation frequencies toward the lower THz frequency range. Higher carrier frequencies will allow for fast transmission of huge amounts of data as needed for new emerging applications. Despite the tremendous hurdles that have to be overcome with regard to sources and detectors, circuit and antenna technology and system architecture to realize ultrafast data transmission in a scenario with extensive transmission loss, a new area of research is beginning to form. In this article we give an overview of emerging technologies and system research that might lead to ubiquitous THz communication systems in the future.

878 citations

Book
24 Nov 2008
TL;DR: In this paper, the FDTD method for periodic structure analysis is used for periodic structures analysis of EBG surfaces and low profile wire antennas are used for EBG surface wave antennas.
Abstract: Preface 1. Introduction 2. FDTD Method for periodic structure analysis 3. EBG Characterizations and classifications 4. Design and optimizations of EBG structures 5. Patch antennas with EBG structures 6. Low profile wire antennas on EBG surfaces 7. Surface wave antennas Appendix: EBG literature review.

634 citations

Journal ArticleDOI
05 Apr 2012
TL;DR: Several examples of reconfigurable antennas for both terrestrial and space applications are highlighted, such as cognitive radio, multiple-input-multiple-output (MIMO) systems, and satellite communication.
Abstract: Reconfigurable antennas, with the ability to radiate more than one pattern at different frequencies and polarizations, are necessary in modern telecommunication systems. The requirements for increased functionality (e.g., direction finding, beam steering, radar, control, and command) within a confined volume place a greater burden on today's transmitting and receiving systems. Reconfigurable antennas are a solution to this problem. This paper discusses the different reconfigurable components that can be used in an antenna to modify its structure and function. These reconfiguration techniques are either based on the integration of radio-frequency microelectromechanical systems (RF-MEMS), PIN diodes, varactors, photoconductive elements, or on the physical alteration of the antenna radiating structure, or on the use of smart materials such as ferrites and liquid crystals. Various activation mechanisms that can be used in each different reconfigurable implementation to achieve optimum performance are presented and discussed. Several examples of reconfigurable antennas for both terrestrial and space applications are highlighted, such as cognitive radio, multiple-input-multiple-output (MIMO) systems, and satellite communication.

595 citations

Journal ArticleDOI
TL;DR: In this article, a frequency selective radome is presented, acting as a pass band filter at a given frequency band, while behaving as an absorber above the transmission band, which is obtained by a metallic FSS realized through a compact interdigitated Jerusalem cross element characterized by a very large rejection band.
Abstract: A frequency selective radome is presented, acting as a pass band filter at a given frequency band, while behaving as an absorber above the transmission band. The pass band behavior is obtained by a metallic FSS realized through a compact interdigitated Jerusalem cross element characterized by a very large rejection band. The metallic FSS is used as the ground plane of a thin wideband absorber based on resistive high-impedance surfaces within the total reflection band. The outer absorber reduces the signature of the antenna system when the radome is illuminated by out of band signals. The resistive FSS which comprises the absorber is designed so to minimize losses within the transmitting band of the radome. The composite structure is thoroughly analyzed by an efficient equivalent circuit approach and by full-wave numerical simulations.

584 citations

Journal ArticleDOI
TL;DR: The preliminary outcomes of extensive research on mmWave massive MIMO are presented and emerging trends together with their respective benefits, challenges, and proposed solutions are highlighted to point out current trends, evolving research issues and future directions on this technology.
Abstract: Several enabling technologies are being explored for the fifth-generation (5G) mobile system era. The aim is to evolve a cellular network that remarkably pushes forward the limits of legacy mobile systems across all dimensions of performance metrics. One dominant technology that consistently features in the list of the 5G enablers is the millimeter-wave (mmWave) massive multiple-input-multiple-output (massive MIMO) system. It shows potentials to significantly raise user throughput, enhance spectral and energy efficiencies and increase the capacity of mobile networks using the joint capabilities of the huge available bandwidth in the mmWave frequency bands and high multiplexing gains achievable with massive antenna arrays. In this survey, we present the preliminary outcomes of extensive research on mmWave massive MIMO (as research on this subject is still in the exploratory phase) and highlight emerging trends together with their respective benefits, challenges, and proposed solutions. The survey spans broad areas in the field of wireless communications, and the objective is to point out current trends, evolving research issues and future directions on mmWave massive MIMO as a technology that will open up new frontiers of services and applications for next-generation cellular networks.

491 citations