scispace - formally typeset
Search or ask a question
Author

Andrew S. Dzurak

Bio: Andrew S. Dzurak is an academic researcher from University of New South Wales. The author has contributed to research in topics: Qubit & Quantum computer. The author has an hindex of 57, co-authored 300 publications receiving 13975 citations. Previous affiliations of Andrew S. Dzurak include University of Cambridge & University of Melbourne.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review describes recent groundbreaking results in Si, Si/SiGe, and dopant-based quantum dots, and highlights the remarkable advances in Sibased quantum physics that have occurred in the past few years.
Abstract: This review describes recent groundbreaking results in Si, Si/SiGe, and dopant-based quantum dots, and it highlights the remarkable advances in Si-based quantum physics that have occurred in the past few years. This progress has been possible thanks to materials development of Si quantum devices, and the physical understanding of quantum effects in silicon. Recent critical steps include the isolation of single electrons, the observation of spin blockade, and single-shot readout of individual electron spins in both dopants and gated quantum dots in Si. Each of these results has come with physics that was not anticipated from previous work in other material systems. These advances underline the significant progress toward the realization of spin quantum bits in a material with a long spin coherence time, crucial for quantum computation and spintronics.

998 citations

Journal ArticleDOI
15 Oct 2015-Nature
TL;DR: A two-qubit logic gate is presented, which uses single spins in isotopically enriched silicon and is realized by performing single- and two- qubits operations in a quantum dot system using the exchange interaction, as envisaged in the Loss–DiVincenzo proposal.
Abstract: Quantum computation requires qubits that can be coupled in a scalable manner, together with universal and high-fidelity one- and two-qubit logic gates. Many physical realizations of qubits exist, including single photons, trapped ions, superconducting circuits, single defects or atoms in diamond and silicon, and semiconductor quantum dots, with single-qubit fidelities that exceed the stringent thresholds required for fault-tolerant quantum computing. Despite this, high-fidelity two-qubit gates in the solid state that can be manufactured using standard lithographic techniques have so far been limited to superconducting qubits, owing to the difficulties of coupling qubits and dephasing in semiconductor systems. Here we present a two-qubit logic gate, which uses single spins in isotopically enriched silicon and is realized by performing single- and two-qubit operations in a quantum dot system using the exchange interaction, as envisaged in the Loss-DiVincenzo proposal. We realize CNOT gates via controlled-phase operations combined with single-qubit operations. Direct gate-voltage control provides single-qubit addressability, together with a switchable exchange interaction that is used in the two-qubit controlled-phase gate. By independently reading out both qubits, we measure clear anticorrelations in the two-spin probabilities of the CNOT gate.

933 citations

Journal ArticleDOI
TL;DR: This work combines the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, consistent with that required for fault-tolerant quantum computing.
Abstract: A quantum bit that can be addressed with a gate voltage and has a very high control-fidelity can be realized in an electrically defined silicon quantum dot.

885 citations

Journal ArticleDOI
27 Sep 2012-Nature
TL;DR: This work demonstrates the coherent manipulation of an individual electron spin qubit bound to a phosphorus donor atom in natural silicon, measured electrically via single-shot read-out.
Abstract: A single atom is the prototypical quantum system, and a natural candidate for a quantum bit, or qubit--the elementary unit of a quantum computer. Atoms have been successfully used to store and process quantum information in electromagnetic traps, as well as in diamond through the use of the nitrogen-vacancy-centre point defect. Solid-state electrical devices possess great potential to scale up such demonstrations from few-qubit control to larger-scale quantum processors. Coherent control of spin qubits has been achieved in lithographically defined double quantum dots in both GaAs (refs 3-5) and Si (ref. 6). However, it is a formidable challenge to combine the electrical measurement capabilities of engineered nanostructures with the benefits inherent in atomic spin qubits. Here we demonstrate the coherent manipulation of an individual electron spin qubit bound to a phosphorus donor atom in natural silicon, measured electrically via single-shot read-out. We use electron spin resonance to drive Rabi oscillations, and a Hahn echo pulse sequence reveals a spin coherence time exceeding 200 µs. This time should be even longer in isotopically enriched (28)Si samples. Combined with a device architecture that is compatible with modern integrated circuit technology, the electron spin of a single phosphorus atom in silicon should be an excellent platform on which to build a scalable quantum computer.

806 citations

Journal ArticleDOI
08 Mar 2013-Science
TL;DR: The past decade has seen remarkable progress in isolating and controlling quantum coherence using charges and spins in semiconductors, and electron spin coherence times now exceed several seconds, a nine-fold increase in coherence compared with the first semiconductor qubits.
Abstract: The past decade has seen remarkable progress in isolating and controlling quantum coherence using charges and spins in semiconductors. Quantum control has been established at room temperature, and electron spin coherence times now exceed several seconds, a nine–order-of-magnitude increase in coherence compared with the first semiconductor qubits. These coherence times rival those traditionally found only in atomic systems, ushering in a new era of ultracoherent spintronics. We review recent advances in quantum measurements, coherent control, and the generation of entangled states and describe some of the challenges that remain for processing quantum information with spins in semiconductors.

691 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
12 Sep 2010-Nature
TL;DR: A number of physical systems, spanning much of modern physics, are being developed for this task, ranging from single particles of light to superconducting circuits, and it is not yet clear which, if any, will ultimately prove successful as discussed by the authors.
Abstract: Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future

2,301 citations

01 Jan 2011

2,117 citations

Journal ArticleDOI
29 Nov 2017-Nature
TL;DR: This work demonstrates a method for creating controlled many-body quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with strong, coherent interactions enabled by excitation to Rydberg states, and realizes a programmable Ising-type quantum spin model with tunable interactions and system sizes of up to 51 qubits.
Abstract: Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter, enable the realization of new quantum phases and could ultimately lead to computational systems that outperform existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-body quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantum spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions into spatially ordered states that break various discrete symmetries, verify the high-fidelity preparation of these states and investigate the dynamics across the phase transition in large arrays of atoms. In particular, we observe robust many-body dynamics corresponding to persistent oscillations of the order after a rapid quantum quench that results from a sudden transition across the phase boundary. Our method provides a way of exploring many-body phenomena on a programmable quantum simulator and could enable realizations of new quantum algorithms.

2,026 citations