scispace - formally typeset
Search or ask a question
Author

Andrew Steele

Bio: Andrew Steele is an academic researcher from Carnegie Institution for Science. The author has contributed to research in topics: Mars Exploration Program & Sample Analysis at Mars. The author has an hindex of 54, co-authored 334 publications receiving 13254 citations. Previous affiliations of Andrew Steele include Hospital Authority & Goddard Space Flight Center.


Papers
More filters
Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study, and preliminary examination shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin.
Abstract: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

886 citations

Journal ArticleDOI
07 Mar 2002-Nature
TL;DR: The purported microfossil-like structure is reinterpreted as secondary artefacts formed from amorphous graphite within multiple generations of metalliferous hydrothermal vein chert and volcanic glass, and a Fischer–Tropsch-type synthesis of carbon compounds and carbon isotopic fractionation is inferred for one of the oldest known hydroThermal systems on Earth.
Abstract: Structures resembling remarkably preserved bacterial and cyanobacterial microfossils from about 3,465-million-year-old Apex cherts of the Warrawoona Group in Western Australia currently provide the oldest morphological evidence for life on Earth and have been taken to support an early beginning for oxygen-producing photosynthesis. Eleven species of filamentous prokaryote, distinguished by shape and geometry, have been put forward as meeting the criteria required of authentic Archaean microfossils, and contrast with other microfossils dismissed as either unreliable or unreproducible. These structures are nearly a billion years older than putative cyanobacterial biomarkers, genomic arguments for cyanobacteria, an oxygenic atmosphere and any comparably diverse suite of microfossils. Here we report new research on the type and re-collected material, involving mapping, optical and electron microscopy, digital image analysis, micro-Raman spectroscopy and other geochemical techniques. We reinterpret the purported microfossil-like structure as secondary artefacts formed from amorphous graphite within multiple generations of metalliferous hydrothermal vein chert and volcanic glass. Although there is no support for primary biological morphology, a Fischer--Tropsch-type synthesis of carbon compounds and carbon isotopic fractionation is inferred for one of the oldest known hydrothermal systems on Earth.

804 citations

Journal ArticleDOI
24 Jan 2014-Science
TL;DR: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy.
Abstract: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.

770 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage and a diverse suite of organic compounds is present and identifiable within the returned samples.
Abstract: Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.

547 citations

Journal ArticleDOI
Paul R. Mahaffy1, Chris Webster2, Michel Cabane3, Pamela G. Conrad1, Patrice Coll4, Sushil K. Atreya5, Robert Arvey1, Michael Barciniak1, Mehdi Benna1, L. Bleacher1, William B. Brinckerhoff1, Jennifer L. Eigenbrode1, Daniel Carignan1, Mark Cascia1, Robert A. Chalmers1, Jason P. Dworkin1, Therese Errigo1, Paula Everson1, Heather B. Franz1, Rodger Farley1, Steven Feng1, Gregory Frazier1, Caroline Freissinet1, Daniel P. Glavin1, D. N. Harpold1, Douglas L. Hawk1, Vincent Holmes1, Christopher S. Johnson1, Andrea Jones1, Patrick R. Jordan1, James W. Kellogg1, Jesse Lewis1, Eric Lyness1, Charles Malespin1, David Martin1, John Maurer1, Amy McAdam1, Douglas McLennan1, T. Nolan1, Marvin Noriega1, Alexander A. Pavlov1, B. D. Prats1, E. Raaen1, Oren E. Sheinman1, D. Sheppard1, James Smith1, Jennifer C. Stern1, Florence Tan1, Melissa G. Trainer1, Douglas W. Ming, Richard V. Morris, John H. Jones, Cindy Gundersen, Andrew Steele6, James J. Wray7, Oliver Botta, Laurie A. Leshin8, Tobias Owen9, Steve Battel, Bruce M. Jakosky10, H. L. K. Manning11, Steven W. Squyres12, Rafael Navarro-González13, Christopher P. McKay14, François Raulin3, Robert Sternberg3, Arnaud Buch15, Paul Sorensen, Robert Kline-Schoder, David Coscia3, Cyril Szopa3, Samuel Teinturier3, Curt Baffes2, Jason Feldman2, Greg Flesch2, Siamak Forouhar2, Ray Garcia2, Didier Keymeulen2, Steve Woodward2, Bruce P. Block5, Ken Arnett5, Ryan M. Miller5, Charles Edmonson5, Stephen Gorevan16, E. Mumm16 
TL;DR: The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples.
Abstract: The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL’s Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover’s robotic arm.

475 citations


Cited by
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Book
01 Jan 2002
TL;DR: This chapter discusses the organization and structure of Photosynthetic Systems, as well as the history and development of Photosynthesis, and the origins and evolution of photosynthesis.
Abstract: 1. Light and Energy. 2. Organization and Structure of Photosynthetic Systems. 3. History and Development of Photosynthesis. 4. Photosynthetic Pigments-Structure and Spectroscopy. 5. Antenna Complexes and Energy Transfer Processes. 6. Reaction Center Complexes. 7. Electron Transfer Pathways and Components. 8. Chemiosmotic Coupling and ATP Synthesis. 9. Carbon Metabolism. 10. Genetics, Assembly and Regulation of Photosynthetic. Systems. 11. Origin and Evolution of Photosynthesis. Appendix 1. Light, Energy and Kinetics

2,070 citations

Journal ArticleDOI
TL;DR: In this paper, a text on rings, fields and algebras is intended for graduate students in mathematics, aiming the level of writing at the novice rather than at the expert, and by stressing the role of examples and motivation.
Abstract: This text, drawn from the author's lectures at the University of California at Berkeley, is intended as a textbook for a one-term course in basic ring theory. The material covered includes the Wedderburn-Artin theory of semi-simple rings, Jacobson's theory of the radical representation theory of groups and algebras, prime and semi-prime rings, primitive and semi-primitive rings, division rings, ordered rings, local and semi-local rings, and perfect and semi-perfect rings. By aiming the level of writing at the novice rather than at the expert, and by stressing the role of examples and motivation, the author has produced a text which is suitable not only for use in a graduate course, but also for self-study by other interested graduate students. Numerous exercises are also included. This graduate textbook on rings, fields and algebras is intended for graduate students in mathematics.

1,479 citations

Journal ArticleDOI
TL;DR: The specific role of microbes and the EPS matrix in various mineralization processes are reviewed and examples of modern aquatic (freshwater, marine and hypersaline) and terrestrial microbialites are discussed.

1,219 citations

Journal ArticleDOI
14 Jul 2011-Nature
TL;DR: Simulation of the early Solar System shows how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1’au; the terrestrial planets then form from this disk over the next 30–50 million years, with an Earth/Mars mass ratio consistent with observations.
Abstract: Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

1,174 citations