scispace - formally typeset
Search or ask a question
Author

Andrew T. Campbell

Other affiliations: Tsinghua University, Teesside University, Lancaster University  ...read more
Bio: Andrew T. Campbell is an academic researcher from Dartmouth College. The author has contributed to research in topics: Quality of service & Wireless sensor network. The author has an hindex of 75, co-authored 347 publications receiving 28175 citations. Previous affiliations of Andrew T. Campbell include Tsinghua University & Teesside University.


Papers
More filters
Journal ArticleDOI
TL;DR: This article surveys existing mobile phone sensing algorithms, applications, and systems, and discusses the emerging sensing paradigms, and formulates an architectural framework for discussing a number of the open issues and challenges emerging in the new area ofMobile phone sensing research.
Abstract: Mobile phones or smartphones are rapidly becoming the central computer and communication device in people's lives. Application delivery channels such as the Apple AppStore are transforming mobile phones into App Phones, capable of downloading a myriad of applications in an instant. Importantly, today's smartphones are programmable and come with a growing set of cheap powerful embedded sensors, such as an accelerometer, digital compass, gyroscope, GPS, microphone, and camera, which are enabling the emergence of personal, group, and communityscale sensing applications. We believe that sensor-equipped mobile phones will revolutionize many sectors of our economy, including business, healthcare, social networks, environmental monitoring, and transportation. In this article we survey existing mobile phone sensing algorithms, applications, and systems. We discuss the emerging sensing paradigms, and formulate an architectural framework for discussing a number of the open issues and challenges emerging in the new area of mobile phone sensing research.

2,316 citations

Proceedings ArticleDOI
05 Nov 2008
TL;DR: The CenceMe application is presented, which represents the first system that combines the inference of the presence of individuals using off-the-shelf, sensor-enabled mobile phones with sharing of this information through social networking applications such as Facebook and MySpace.
Abstract: We present the design, implementation, evaluation, and user ex periences of theCenceMe application, which represents the first system that combines the inference of the presence of individuals using off-the-shelf, sensor-enabled mobile phones with sharing of this information through social networking applications such as Facebook and MySpace. We discuss the system challenges for the development of software on the Nokia N95 mobile phone. We present the design and tradeoffs of split-level classification, whereby personal sensing presence (e.g., walking, in conversation, at the gym) is derived from classifiers which execute in part on the phones and in part on the backend servers to achieve scalable inference. We report performance measurements that characterize the computational requirements of the software and the energy consumption of the CenceMe phone client. We validate the system through a user study where twenty two people, including undergraduates, graduates and faculty, used CenceMe continuously over a three week period in a campus town. From this user study we learn how the system performs in a production environment and what uses people find for a personal sensing system.

1,184 citations

Proceedings ArticleDOI
05 Nov 2003
TL;DR: Simulation results indicate that CODA significantly improves the performance of data dissemination applications such as directed diffusion by mitigating hotspots, and reducing the energy tax with low fidelity penalty on sensing applications.
Abstract: Event-driven sensor networks operate under an idle or light load and then suddenly become active in response to a detected or monitored event. The transport of event impulses is likely to lead to varying degrees of congestion in the network depending on the sensing application. It is during these periods of event impulses that the likelihood of congestion is greatest and the information in transit of most importance to users. To address this challenge we propose an energy efficient congestion control scheme for sensor networks called CODA (COngestion Detection and Avoidance) that comprises three mechanisms: (i) receiver-based congestion detection; (ii) open-loop hop-by-hop backpressure; and (iii) closed-loop multi-source regulation. We present the detailed design, implementation, and evaluation of CODA using simulation and experimentation. We define two important performance metrics (i.e., energy tax and fidelity penalty) to evaluate the impact of CODA on the performance of sensing applications. We discuss the performance benefits and practical engineering challenges of implementing CODA in an experimental sensor network testbed based on Berkeley motes using CSMA. Simulation results indicate that CODA significantly improves the performance of data dissemination applications such as directed diffusion by mitigating hotspots, and reducing the energy tax with low fidelity penalty on sensing applications. We also demonstrate that CODA is capable of responding to a number of congestion scenarios that we believe will be prevalent as the deployment of these networks accelerates.

1,009 citations

Proceedings ArticleDOI
13 Sep 2014
TL;DR: A Dartmouth term lifecycle is identified in the data that shows students start the term with high positive affect and conversation levels, low stress, and healthy sleep and daily activity patterns, while stress appreciably rises while positive affect, sleep, conversation and activity drops off.
Abstract: Much of the stress and strain of student life remains hidden. The StudentLife continuous sensing app assesses the day-to-day and week-by-week impact of workload on stress, sleep, activity, mood, sociability, mental well-being and academic performance of a single class of 48 students across a 10 week term at Dartmouth College using Android phones. Results from the StudentLife study show a number of significant correlations between the automatic objective sensor data from smartphones and mental health and educational outcomes of the student body. We also identify a Dartmouth term lifecycle in the data that shows students start the term with high positive affect and conversation levels, low stress, and healthy sleep and daily activity patterns. As the term progresses and the workload increases, stress appreciably rises while positive affect, sleep, conversation and activity drops off. The StudentLife dataset is publicly available on the web.

917 citations

Proceedings ArticleDOI
28 Sep 2002
TL;DR: It is shown through simulation and experimentation that PSFQ can out perform existing related techniques and is highly responsive to the various error conditions experienced in wireless sensor networks, respectively.
Abstract: We propose PSFQ (Pump Slowly, Fetch Quickly), a reliable transport protocol suitable for a new class of reliable data applications emerging in wireless sensor networks. For example, currently sensor networks tend to be application specific and are typically hard-wired to perform a specific task efficiently at low cost; however, there is an emerging need to be able to re-task or reprogram groups of sensors in wireless sensor networks on the fly (e.g., during disaster recovery). Due to the application-specific nature of sensor networks, it is difficult to design a single monolithic transport system that can be optimized for every application. PSFQ takes a different approach and supports a simple, robust and scalable transport that is customizable to meet the needs of different reliable data applications. To our knowledge there has been little or no work on the design of an efficient reliable transport protocol for wireless sensor networks, even though some techniques found in IP networks have some relevance to the solution space, such as, the body of work on reliable multicast. We present the design and implementation of PSFQ, and evaluate the protocol using the ns-2 simulator and an experimental wireless sensor testbed based on Berkeley motes. We show through simulation and experimentation that PSFQ can out perform existing related techniques (e.g., an idealized SRM scheme) and is highly responsive to the various error conditions experienced in wireless sensor networks, respectively.

705 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a cloud centric vision for worldwide implementation of Internet of Things (IoT) and present a Cloud implementation using Aneka, which is based on interaction of private and public Clouds, and conclude their IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.

9,593 citations

Journal ArticleDOI
31 Mar 2008
TL;DR: This whitepaper proposes OpenFlow: a way for researchers to run experimental protocols in the networks they use every day, based on an Ethernet switch, with an internal flow-table, and a standardized interface to add and remove flow entries.
Abstract: This whitepaper proposes OpenFlow: a way for researchers to run experimental protocols in the networks they use every day. OpenFlow is based on an Ethernet switch, with an internal flow-table, and a standardized interface to add and remove flow entries. Our goal is to encourage networking vendors to add OpenFlow to their switch products for deployment in college campus backbones and wiring closets. We believe that OpenFlow is a pragmatic compromise: on one hand, it allows researchers to run experiments on heterogeneous switches in a uniform way at line-rate and with high port-density; while on the other hand, vendors do not need to expose the internal workings of their switches. In addition to allowing researchers to evaluate their ideas in real-world traffic settings, OpenFlow could serve as a useful campus component in proposed large-scale testbeds like GENI. Two buildings at Stanford University will soon run OpenFlow networks, using commercial Ethernet switches and routers. We will work to encourage deployment at other schools; and We encourage you to consider deploying OpenFlow in your university network too

9,138 citations

Journal ArticleDOI
TL;DR: This work proposes a principled statistical framework for discerning and quantifying power-law behavior in empirical data by combining maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and likelihood ratios.
Abstract: Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena. Unfortunately, the detection and characterization of power laws is complicated by the large fluctuations that occur in the tail of the distribution—the part of the distribution representing large but rare events—and by the difficulty of identifying the range over which power-law behavior holds. Commonly used methods for analyzing power-law data, such as least-squares fitting, can produce substantially inaccurate estimates of parameters for power-law distributions, and even in cases where such methods return accurate answers they are still unsatisfactory because they give no indication of whether the data obey a power law at all. Here we present a principled statistical framework for discerning and quantifying power-law behavior in empirical data. Our approach combines maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and likelihood ratios. We evaluate the effectiveness of the approach with tests on synthetic data and give critical comparisons to previous approaches. We also apply the proposed methods to twenty-four real-world data sets from a range of different disciplines, each of which has been conjectured to follow a power-law distribution. In some cases we find these conjectures to be consistent with the data, while in others the power law is ruled out.

8,753 citations