scispace - formally typeset
Search or ask a question
Author

Andrew White

Other affiliations: University of Liverpool
Bio: Andrew White is an academic researcher from Heriot-Watt University. The author has contributed to research in topics: Population & Carbon sink. The author has an hindex of 35, co-authored 92 publications receiving 5874 citations. Previous affiliations of Andrew White include University of Liverpool.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics.
Abstract: The possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 (Wigley et al. 1991), and by climate changes resulting from effective CO2 concentrations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2-SUL. Simulations with changing CO2 alone show a widely distributed terrestrial carbon sink of 1.4‐3.8 Pg C y ‐1 during the 1990s, rising to 3.7‐8.6 Pg C y ‐1 a century later. Simulations including climate change show a reduced sink both today (0.6‐ 3.0 Pg C y ‐1 ) and a century later (0.3‐6.6 Pg C y ‐1 ) as a result of the impacts of climate change on NEP of tropical and southern hemisphere ecosystems. In all models, the rate of increase of NEP begins to level off around 2030 as a consequence of the ‘diminishing return’ of physiological CO2 effects at high CO2 concentrations. Four out of the six models show a further, climate-induced decline in NEP resulting from increased heterotrophic respiration and declining tropical NPP after 2050. Changes in vegetation structure influence the magnitude and spatial pattern of the carbon sink and, in combination with changing climate, also freshwater availability (runoff). It is shown that these changes, once set in motion, would continue to evolve for at least a century even if atmospheric CO2 concentration and climate could be instantaneously stabilized. The results should be considered illustrative in the sense that the choice of CO2 concentration scenario was arbitrary and only one climate model scenario was used. However, the results serve to indicate a range of possible biospheric responses to CO2 and climate change. They reveal major uncertainties about the response of NEP to climate

1,982 citations

Journal ArticleDOI
TL;DR: It is shown that parapoxvirus is likely to have played a crucial role in the red squirrel decline even though the prevalence of infection is low, and conservationists should pay particular attention to pathogens, even when they occur at low prevalence.
Abstract: Although a parapoxvirus harmful to red squirrels is present in UK squirrel populations it has not been considered a major cause of red squirrel decline, and replacement by the introduced grey squirrel, mainly because diseased individuals are rarely observed. By developing a generic model we show that parapoxvirus is likely to have played a crucial role in the red squirrel decline even though the prevalence of infection is low. Conservationists are quite rightly concerned with the invasion of exotic organisms such as the grey squirrel. Our work emphasizes that they, along with other ecologists, should pay particular attention to pathogens, even when they occur at low prevalence.

331 citations

Journal ArticleDOI
TL;DR: The aim of this work is to review theoretical approaches that investigate the evolution of defence and to explain how the type of Defence and the costs associated with its acquisition are important in determining the level of defence that evolves.
Abstract: Hosts have evolved a diverse range of defence mechanisms in response to challenge by infectious organisms (parasites and pathogens). Whether defence is through avoidance of infection, control of the growth of the parasite once infected, clearance of the infection, tolerance to the disease caused by infection or innate and/or acquired immunity, it will have important implications for the population ecology (epidemiology) of the host–parasite interaction. As a consequence, it is important to understand the evolutionary dynamics of defence in the light of the ecological feedbacks that are intrinsic to the interaction. Here, we review the theoretical models that examine how these feedbacks influence the nature and extent of the defence that will evolve. We begin by briefly comparing different evolutionary modelling approaches and discuss in detail the modern game theoretical approach (adaptive dynamics) that allows ecological feedbacks to be taken into account. Next, we discuss a number of models of host defence in detail and, in particular, make a distinction between ‘resistance’ and ‘tolerance’. Finally, we discuss coevolutionary models and the potential use of models that include genetic and game theoretical approaches. Our aim is to review theoretical approaches that investigate the evolution of defence and to explain how the type of defence and the costs associated with its acquisition are important in determining the level of defence that evolves.

196 citations

Journal ArticleDOI
TL;DR: It is shown that parasites may evolve either higher or lower within-host growth rates depending on the nature of the tolerance mechanism, which may select for faster or slower replicating parasites.
Abstract: Tolerance to parasites reduces the harm that infection causes the host (virulence). Here we investigate the evolution of parasites in response to host tolerance. We show that parasites may evolve either higher or lower within-host growth rates depending on the nature of the tolerance mechanism. If tolerance reduces virulence by a constant factor, the parasite is always selected to increase its growth rate. Alternatively, if tolerance reduces virulence in a nonlinear manner such that it is less effective at reducing the damage caused by higher growth rates, this may select for faster or slower replicating parasites. If the host is able to completely tolerate pathogen damage up to a certain replication rate, this may result in apparent commensalism, whereby infection causes no apparent virulence but the original evolution of tolerance has been costly. Tolerance tends to increase disease prevalence and may therefore lead to more, rather than less, disease-induced mortality. If the parasite is selected, even a highly efficient tolerance mechanism may result in more individuals in total dying from disease. However, the evolution of tolerance often, although not always, reduces the individual risk of dying from infection.

187 citations

Journal ArticleDOI
TL;DR: In this article, the UK Hadley Centre's HadCM2 and HadCM3 experiments for the period 1860 to 2100, with IS92a greenhouse gas forcing, together with predicted patterns of N deposition and increasing CO 2, were input (o%ine) to the dynamic vegetation model, Hybrid v4.1 (Friend et al., 1997; Friend and White, 1999).
Abstract: Climate output from the UK Hadley Centre’s HadCM2 and HadCM3 experiments for the period 1860 to 2100, with IS92a greenhouse gas forcing, together with predicted patterns of N deposition and increasing CO 2 , were input (o%ine) to the dynamic vegetation model, Hybrid v4.1 (Friend et al., 1997; Friend and White, 1999). This model represents biogeochemical, biophysical and biogeographical processes, coupling the carbon, nitrogen and water cycles on a sub-daily timestep, simulating potential vegetation and transient changes in annual growth and competition between eight generalized plant types in response to climate. Global vegetation carbon was predicted to rise from about 600 to 800 PgC (or to 650 PgC for HadCM3) while the soil carbon pool of about 1100 PgC decreased by about 8%. By the 2080s, climate change caused a partial loss of Amazonian rainforest, C 4 grasslands and temperate forest in areas of southern Europe and eastern USA, but an expansion in the boreal forest area. These changes were accompanied by a decrease in net primary productivity (NPP) of vegetation in many tropical areas, southern Europe and eastern USA (in response to warming and a decrease in rainfall), but an increase in NPP of boreal forests. Global NPP increased from 45 to 50 PgC y~1 in the 1990s to about 65 PgC y~1 in the 2080s (about 58 PgC y~1 for HadCM3). Global net ecosystem productivity (NEP) increased from about 1.3 PgC y~1 in the 1990s to about 3.6 PgC y~1 in the 2030s and then declined to zero by 2100 owing to a loss of carbon from declining forests in the tropics and at warm temperate latitudes * despite strengthening of the carbon sink at northern high latitudes. HadCM3 gave a more erratic temporal evolution of NEP than HadCM2, with a dramatic collapse in NEP in the 2050s. ( 1999 Elsevier Science Ltd. All rights reserved.

175 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: In this paper, a hierarchical modeling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent framework, and it is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity.
Abstract: Modelling strategies for predicting the potential impacts of climate change on the natural distribution of species have often focused on the characterization of a species’ bioclimate envelope. A number of recent critiques have questioned the validity of this approach by pointing to the many factors other than climate that play an important part in determining species distributions and the dynamics of distribution changes. Such factors include biotic interactions, evolutionary change and dispersal ability. This paper reviews and evaluates criticisms of bioclimate envelope models and discusses the implications of these criticisms for the different modelling strategies employed. It is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity. However, it is stressed that the spatial scale at which these models are applied is of fundamental importance, and that model results should not be interpreted without due consideration of the limitations involved. A hierarchical modelling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent

3,847 citations

Journal ArticleDOI
Peter M. Cox1, Richard Betts1, Chris D. Jones1, S. A. Spall1, I. Totterdell 
09 Nov 2000-Nature
TL;DR: Results from a fully coupled, three-dimensional carbon–climate model are presented, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century.
Abstract: The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon–climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr-1 is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback.

3,816 citations

Book
28 Oct 2007
TL;DR: Mathematical modeling of infectious dis-eases has progressed dramatically over the past 3 decades and continues to be a valuable tool at the nexus of mathematics, epidemiol-ogy, and infectious diseases research.
Abstract: By Matthew James Keelingand Pejman RohaniPrinceton, NJ: Princeton University Press,2008.408 pp., Illustrated. $65.00 (hardcover).Mathematical modeling of infectious dis-eases has progressed dramatically over thepast 3 decades and continues to flourishat the nexus of mathematics, epidemiol-ogy, and infectious diseases research. Nowrecognized as a valuable tool, mathemat-ical models are being integrated into thepublic health decision-making processmore than ever before. However, despiterapid advancements in this area, a formaltraining program for mathematical mod-eling is lacking, and there are very fewbooks suitable for a broad readership. Tosupport this bridging science, a commonlanguage that is understood in all con-tributing disciplines is required.

3,467 citations