scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
Proceedings ArticleDOI
25 Oct 2020
TL;DR: The goal of this work is to train models that can identify a spoken language just by interpreting the speaker’s lip movements, and it is demonstrated that this model indeed solves the problem by finding temporal patterns in mouth movements and not by exploiting spurious correlations.
Abstract: The goal of this work is to train models that can identify a spoken language just by interpreting the speaker’s lip movements. Our contributions are the following: (i) we show that models can learn to discriminate among 14 different languages using only visual speech information; (ii) we compare different designs in sequence modelling and utterance-level aggregation in order to determine the best architecture for this task; (iii) we investigate the factors that contribute discriminative cues and show that our model indeed solves the problem by finding temporal patterns in mouth movements and not by exploiting spurious correlations. We demonstrate this further by evaluating our models on challenging examples from bilingual speakers.

4 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: In this paper, a counting, crop and recognize (CCR) multi-stage recognition process for frame level labelling was proposed to label all the animals present in every frame of a video.
Abstract: The goal of this paper is to label all the animal individuals present in every frame of a video. Unlike previous methods that have principally concentrated on labelling face tracks, we aim to label individuals even when their faces are not visible. We make the following contributions: (i) we introduce a 'Count, Crop and Recognise' (CCR) multi-stage recognition process for frame level labelling. The Count and Recognise stages involve specialised CNNs for the task, and we show that this simple staging gives a substantial boost in performance; (ii) we compare the recall using frame based labelling to both face and body track based labelling, and demonstrate the advantage of frame based with CCR for the specified goal; (iii) we introduce a new dataset for chimpanzee recognition in the wild; and (iv) we apply a high-granularity visualisation technique to further understand the learned CNN features for the recognition of chimpanzee individuals.

4 citations

Proceedings Article
30 Mar 2021
TL;DR: In this article, a self-supervised learning framework for video is proposed, where one view has access to a narrow temporal window of the video while the other view has a broad access to the video content.
Abstract: Most successful self-supervised learning methods are trained to align the representations of two independent views from the data. State-of-the-art methods in video are inspired by image techniques, where these two views are similarly extracted by cropping and augmenting the resulting crop. However, these methods miss a crucial element in the video domain: time. We introduce BraVe, a self-supervised learning framework for video. In BraVe, one of the views has access to a narrow temporal window of the video while the other view has a broad access to the video content. Our models learn to generalise from the narrow view to the general content of the video. Furthermore, BraVe processes the views with different backbones, enabling the use of alternative augmentations or modalities into the broad view such as optical flow, randomly convolved RGB frames, audio or their combinations. We demonstrate that BraVe achieves state-of-the-art results in self-supervised representation learning on standard video and audio classification benchmarks including UCF101, HMDB51, Kinetics, ESC-50 and AudioSet.

4 citations

Journal ArticleDOI
TL;DR: In this paper, the 3D shape attributes and embedding can be obtained from a single image by training a Convolutional Neural Network (CNN) for this task, which can be used to match previously unseen sculptures largely independent of viewpoint.
Abstract: Our goal in this paper is to investigate properties of 3D shape that can be determined from a single image. We define 3D shape attributes —generic properties of the shape that capture curvature, contact and occupied space. Our first objective is to infer these 3D shape attributes from a single image. A second objective is to infer a 3D shape embedding —a low dimensional vector representing the 3D shape. We study how the 3D shape attributes and embedding can be obtained from a single image by training a Convolutional Neural Network (CNN) for this task. We start with synthetic images so that the contribution of various cues and nuisance parameters can be controlled. We then turn to real images and introduce a large scale image dataset of sculptures containing 143K images covering 2197 works from 242 artists. For the CNN trained on the sculpture dataset we show the following: (i) which regions of the imaged sculpture are used by the CNN to infer the 3D shape attributes; (ii) that the shape embedding can be used to match previously unseen sculptures largely independent of viewpoint; and (iii) that the 3D attributes generalize to images of other (non-sculpture) object classes.

4 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations