scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
24 Apr 2017
TL;DR: A hybrid neural network architecture that interleaves traditional convolutional layers with L-RNN module for learning long- range dependencies at multiple levels and it is shown that the performance of a pre-trained FCN network can be boosted by 5% by simply inserting Layer- RNNs.
Abstract: In this paper, we propose a Layer-RNN (L-RNN) module that is able to learn contextual information adaptively using within-layer recurrence. Our contributions are three-fold: (i) we propose a hybrid neural network architecture that interleaves traditional convolutional layers with L-RNN module for learning long- range dependencies at multiple levels; (ii) we show that a L-RNN module can be seamlessly inserted into any convolutional layer of a pre-trained CNN, and the entire network then fine-tuned, leading to a boost in performance; (iii) we report experiments on the CIFAR-10 classification task, showing that a network with interleaved convolutional layers and L-RNN modules, achieves comparable results (5.39% top1 error) using only 15 layers and fewer parameters to ResNet-164 (5.46%); and on the PASCAL VOC2012 semantic segmentation task, we show that the performance of a pre-trained FCN network can be boosted by 5% (mean IOU) by simply inserting Layer-RNNs.

3 citations

Posted Content
TL;DR: In this article, the authors train a model using multiple types of available supervision by watching existing sparsely labelled footage, reading associated subtitles, and looking up words in visual sign language dictionaries to enable novel sign spotting.
Abstract: The focus of this work is sign spotting - given a video of an isolated sign, our task is to identify whether and where it has been signed in a continuous, co-articulated sign language video. To achieve this sign spotting task, we train a model using multiple types of available supervision by: (1) watching existing sparsely labelled footage; (2) reading associated subtitles (readily available translations of the signed content) which provide additional weak-supervision; (3) looking up words (for which no co-articulated labelled examples are available) in visual sign language dictionaries to enable novel sign spotting. These three tasks are integrated into a unified learning framework using the principles of Noise Contrastive Estimation and Multiple Instance Learning. We validate the effectiveness of our approach on low-shot sign spotting benchmarks. In addition, we contribute a machine-readable British Sign Language (BSL) dictionary dataset of isolated signs, BSLDict, to facilitate study of this task. The dataset, models and code are available at our project page.

3 citations

Proceedings Article
04 Nov 2016
TL;DR: In this paper, a layerwise optimization algorithm for the learning objective of piecewise-linear convolutional neural networks (PL-CNNs) is presented, where the problem corresponding to the parameter estimation of a layer can be formulated as a difference-of-convex (DC) program, which happens to be a latent structured SVM.
Abstract: We present a novel layerwise optimization algorithm for the learning objective of Piecewise-Linear Convolutional Neural Networks (PL-CNNs), a large class of convolutional neural networks. Specifically, PL-CNNs employ piecewise linear non-linearities such as the commonly used ReLU and max-pool, and an SVM classifier as the final layer. The key observation of our approach is that the problem corresponding to the parameter estimation of a layer can be formulated as a difference-of-convex (DC) program, which happens to be a latent structured SVM. We optimize the DC program using the concave-convex procedure, which requires us to iteratively solve a structured SVM problem. This allows to design an optimization algorithm with an optimal learning rate that does not require any tuning. Using the MNIST, CIFAR and ImageNet data sets, we show that our approach always improves over the state of the art variants of backpropagation and scales to large data and large network settings.

3 citations

Book ChapterDOI
TL;DR: This chapter presents a principled Bayesian method for detecting and segmenting instances of a particular object category within an image, providing a coherent methodology for combining top down and bottom up cues.
Abstract: In this chapter we present a principled Bayesian method for detecting and segmenting instances of a particular object category within an image, providing a coherent methodology for combining top down and bottom up cues. The work draws together two powerful formulations: pictorial structures (ps) and Markov random fields (mrfs) both of which have efficient algorithms for their solution. The resulting combination, which we call the object category specific mrf, suggests a solution to the problem that has long dogged mrfs namely that they provide a poor prior for specific shapes. In contrast, our model provides a prior that is global across the image plane using the ps. We develop an efficient method, ObjCut, to obtain segmentations using this model. Novel aspects of this method include an efficient algorithm for sampling the ps model, and the observation that the expected log likelihood of the model can be increased by a single graph cut. Results are presented on two object categories, cows and horses. We compare our methods to the state of the art in object category specific image segmentation and demonstrate significant improvements.

3 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations