scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
Journal ArticleDOI
TL;DR: An approach to object retrieval which searches for and localizes all the occurrences of an object in a video, given a query image of the object, and investigates retrieval performance with respect to different quantizations of region descriptors and compares the performance of several ranking measures.
Abstract: We describe an approach to object retrieval which searches for and localizes all the occurrences of an object in a video, given a query image of the object. The object is represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, illumination and partial occlusion. The temporal continuity of the video within a shot is used to track the regions in order to reject those that are unstable. Efficient retrieval is achieved by employing methods from statistical text retrieval, including inverted file systems, and text and document frequency weightings. This requires a visual analogy of a word which is provided here by vector quantizing the region descriptors. The final ranking also depends on the spatial layout of the regions. The result is that retrieval is immediate, returning a ranked list of shots in the manner of Google. We report results for object retrieval on the full length feature films 'Groundhog Day', 'Casablanca' and 'Run Lola Run', including searches from within the movie and specified by external images downloaded from the Internet. We investigate retrieval performance with respect to different quantizations of region descriptors and compare the performance of several ranking measures.

514 citations

Proceedings ArticleDOI
18 Jun 2003
TL;DR: A novel texton based representation is developed, which is suited to modeling this joint neighborhood distribution for MRFs, and it is demonstrated that textures can be classified using the joint distribution of intensity values over extremely compact neighborhoods.
Abstract: We question the role that large scale filter banks have traditionally played in texture classification. It is demonstrated that textures can be classified using the joint distribution of intensity values over extremely compact neighborhoods (starting from as small as 3 /spl times/ 3 pixels square), and that this outperforms classification using filter banks with large support. We develop a novel texton based representation, which is suited to modeling this joint neighborhood distribution for MRFs. The representation is learnt from training images, and then used to classify novel images (with unknown viewpoint and lighting) into texture classes. The power of the method is demonstrated by classifying over 2800 images of all 61 textures present in the Columbia-Utrecht database. The classification performance surpasses that of recent state-of-the-art filter bank based classifiers such as Leung & Malik, Cula & Dana, and Varma & Zisserman.

504 citations

01 Dec 2004
TL;DR: In this article, a novel technique for detecting salient regions in an image is described, which is a generalization to affine invariance of the method introduced by Kadir and Brady.
Abstract: In this paper we describe a novel technique for detecting salient regions in an image. The detector is a generalization to affine invariance of the method introduced by Kadir and Brady [10]. The detector deems a region salient if it exhibits unpredictability in both its attributes and its spatial scale.

501 citations

Proceedings ArticleDOI
01 Jan 2013
TL;DR: This paper shows that Fisher vectors on densely sampled SIFT features are capable of achieving state-of-the-art face verification performance on the challenging “Labeled Faces in the Wild” benchmark, and shows that a compact descriptor can be learnt from them using discriminative metric learning.
Abstract: Several recent papers on automatic face verification have significantly raised the performance bar by developing novel, specialised representations that outperform standard features such as SIFT for this problem. This paper makes two contributions: first, and somewhat surprisingly, we show that Fisher vectors on densely sampled SIFT features, i.e. an off-the-shelf object recognition representation, are capable of achieving state-of-the-art face verification performance on the challenging “Labeled Faces in the Wild” benchmark; second, since Fisher vectors are very high dimensional, we show that a compact descriptor can be learnt from them using discriminative metric learning. This compact descriptor has a better recognition accuracy and is very well suited to large scale identification tasks.

488 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: Action Transformer as mentioned in this paper uses a Transformer-style architecture to aggregate features from the spatio-temporal context around the person whose actions we are trying to classify, and shows that by using high-resolution, person-specific, class-agnostic queries, the model spontaneously learns to track individual people and to pick up on semantic context from the actions of others.
Abstract: We introduce the Action Transformer model for recognizing and localizing human actions in video clips. We repurpose a Transformer-style architecture to aggregate features from the spatiotemporal context around the person whose actions we are trying to classify. We show that by using high-resolution, person-specific, class-agnostic queries, the model spontaneously learns to track individual people and to pick up on semantic context from the actions of others. Additionally its attention mechanism learns to emphasize hands and faces, which are often crucial to discriminate an action – all without explicit supervision other than boxes and class labels. We train and test our Action Transformer network on the Atomic Visual Actions (AVA) dataset, outperforming the state-of-the-art by a significant margin using only raw RGB frames as input.

486 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations