scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
Journal ArticleDOI
01 Sep 1999
TL;DR: Methods for creating 3D graphical models of scenes from a limited numbers of images, i.e. one or two, in situations where no scene co‐ordinate measurements are available are presented.
Abstract: We present methods for creating 3D graphical models of scenes from a limited numbers of images, i.e. one or two, in situations where no scene co-ordinate measurements are available. The methods employ constraints available from geometric relationships that are common in architectural scenes - such as parallelism and orthogonality - together with constraints available from the camera. In particular, by using the circular points of a plane simple, linear algorithms are given for computing plane rectification, plane orientation and camera calibration from a single image. Examples of image based 3D modelling are given for both single images and image pairs.

310 citations

Proceedings ArticleDOI
12 May 2019
TL;DR: This paper proposes a powerful speaker recognition deep network, using a ‘thin-ResNet’ trunk architecture, and a dictionary-based NetVLAD or GhostVLAD layer to aggregate features across time, that can be trained end-to-end.
Abstract: The objective of this paper is speaker recognition ‘in the wild’ – where utterances may be of variable length and also contain irrelevant signals. Crucial elements in the design of deep networks for this task are the type of trunk (frame level) network, and the method of temporal aggregation. We propose a powerful speaker recognition deep network, using a ‘thin-ResNet’ trunk architecture, and a dictionary-based NetVLAD or GhostVLAD layer to aggregate features across time, that can be trained end-to-end. We show that our network achieves state of the art performance by a significant margin on the VoxCeleb1 test set for speaker recognition, whilst requiring fewer parameters than previous methods. We also investigate the effect of utterance length on performance, and conclude that for ‘in the wild’ data, a longer length is beneficial.

308 citations

Book ChapterDOI
11 May 2004
TL;DR: In this article, the authors extend the constellation model to include heterogeneous parts which may represent either the appearance or the geometry of a region of the object, and learn their spatial configuration simultaneously and automatically, without supervision, from cluttered images.
Abstract: We extend the constellation model to include heterogeneous parts which may represent either the appearance or the geometry of a region of the object. The parts and their spatial configuration are learnt simultaneously and automatically, without supervision, from cluttered images.

299 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: This work considers the design of a single vector representation for an image that embeds and aggregates a set of local patch descriptors such as SIFT to construct a dense representation, like the Fisher Vector or VLAD, though of small or intermediate size.
Abstract: We consider the design of a single vector representation for an image that embeds and aggregates a set of local patch descriptors such as SIFT. More specifically we aim to construct a dense representation, like the Fisher Vector or VLAD, though of small or intermediate size. We make two contributions, both aimed at regularizing the individual contributions of the local descriptors in the final representation. The first is a novel embedding method that avoids the dependency on absolute distances by encoding directions. The second contribution is a "democratization" strategy that further limits the interaction of unrelated descriptors in the aggregation stage. These methods are complementary and give a substantial performance boost over the state of the art in image search with short or mid-size vectors, as demonstrated by our experiments on standard public image retrieval benchmarks.

297 citations

Journal ArticleDOI
TL;DR: The two key components that are necessary for successful SR restoration are described: the accurate alignment or registration of the LR images and the formulation of an SR estimator that uses a generative image model together with a prior model of the super-resolved image itself.
Abstract: Super-resolution (SR) restoration aims to solve the following problem: given a set of observed images, estimate an image at a higher resolution than is present in any of the individual images. Where the application of this technique differs in computer vision from other fields is in the variety and severity of the registration transformation between the images. In particular this transformation is generally unknown, and a significant component of solving the SR problem in computer vision is the estimation of the transformation. The transformation may have a simple parametric form, or it may be scene dependent and have to be estimated for every point. In either case the transformation is estimated directly and automatically from the images. We describe the two key components that are necessary for successful SR restoration: the accurate alignment or registration of the LR images and the formulation of an SR estimator that uses a generative image model together with a prior model of the super-resolved image itself. As with many other problems in computer vision, these different aspects are tackled in a robust, statistical framework.

296 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations