scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
Journal ArticleDOI
TL;DR: An uncertainty analysis which includes both the errors in image localization and the uncertainty in the imaging transformation is developed, and the distribution of correspondences can be chosen to achieve a particular bound on the uncertainty.

265 citations

Book ChapterDOI
08 Oct 2016
TL;DR: The scenario of learning to count multiple instances of objects from images that have been dot-annotated through crowdsourcing, for which tens of thousands of volunteer annotators have placed dots on instances of penguins in tens of Thousands of images, is explored.
Abstract: In this paper we explore the scenario of learning to count multiple instances of objects from images that have been dot-annotated through crowdsourcing. Specifically, we work with a large and challenging image dataset of penguins in the wild, for which tens of thousands of volunteer annotators have placed dots on instances of penguins in tens of thousands of images. The dataset, introduced and released with this paper, shows such a high-degree of object occlusion and scale variation that individual object detection or simple counting-density estimation is not able to estimate the bird counts reliably.

262 citations

Journal ArticleDOI
TL;DR: This work proposes and proposes and evaluates techniques for searching a video dataset for people in a specific pose, and develops three new pose descriptors and compares their classification and retrieval performance to two baselines built on state-of-the-art object detection models.
Abstract: We present a technique for estimating the spatial layout of humans in still images--the position of the head, torso and arms. The theme we explore is that once a person is localized using an upper body detector, the search for their body parts can be considerably simplified using weak constraints on position and appearance arising from that detection. Our approach is capable of estimating upper body pose in highly challenging uncontrolled images, without prior knowledge of background, clothing, lighting, or the location and scale of the person in the image. People are only required to be upright and seen from the front or the back (not side). We evaluate the stages of our approach experimentally using ground truth layout annotation on a variety of challenging material, such as images from the PASCAL VOC 2008 challenge and video frames from TV shows and feature films. We also propose and evaluate techniques for searching a video dataset for people in a specific pose. To this end, we develop three new pose descriptors and compare their classification and retrieval performance to two baselines built on state-of-the-art object detection models.

261 citations

BookDOI
01 Jan 2006
TL;DR: This book is the outcome of two workshops that brought together about 40 prominent vision and machine learning researchers interested in the fundamental and applicative aspects of object recognition, as well as representatives of industry to promote the creation of an international object recognition community.
Abstract: This book is the outcome of two workshops that brought together about 40 prominent vision and machine learning researchers interested in the fundamental and applicative aspects of object recognition, as well as representatives of industry. The main goals of these two workshops were (1) to promote the creation of an international object recognition community, with common datasets and evaluation procedures, (2) to map the state of the art and identify the main open problems and opportunities for synergistic research, and (3) to articulate the industrial and societal needs and opportunities for object recognition research worldwide. These goals are reflected in a relatively small number of papers that illustrate the breadth of today's object recognition research and the arsenal of techniques at its disposal, and discuss current achievements and outstanding challenges. Most of the chapters are descriptions of technical approaches, intended to capture the current state of the art. Some of the chapters are of a tutorial nature. They cover fundamental building blocks for object recognition techniques.

260 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: The model builds a model of the base-level category that can be fitted to images, producing high-quality foreground segmentation and mid-level part localizations, and improves the categorization accuracy over the state-of-the-art.
Abstract: We propose a new method for the task of fine-grained visual categorization The method builds a model of the base-level category that can be fitted to images, producing high-quality foreground segmentation and mid-level part localizations The model can be learnt from the typical datasets available for fine-grained categorization, where the only annotation provided is a loose bounding box around the instance (eg bird) in each image Both segmentation and part localizations are then used to encode the image content into a highly-discriminative visual signature The model is symbiotic in that part discovery/localization is helped by segmentation and, conversely, the segmentation is helped by the detection (eg part layout) Our model builds on top of the part-based object category detector of Felzenszwalb et al, and also on the powerful Grab Cut segmentation algorithm of Rother et al, and adds a simple spatial saliency coupling between them In our evaluation, the model improves the categorization accuracy over the state-of-the-art It also improves over what can be achieved with an analogous system that runs segmentation and part-localization independently

260 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations