scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
Proceedings ArticleDOI
07 Jul 2001
TL;DR: A texture region descriptor is described and demonstrated which is invariant to affine geometric and photometric transformations, and insensitive to the shape of the texture region, resulting in richer and more stable descriptors than those computed at a point.
Abstract: We describe and demonstrate a texture region descriptor which is invariant to affine geometric and photometric transformations, and insensitive to the shape of the texture region. It is applicable to texture patches which are locally planar and have stationary statistics. The novelty of the descriptor is that it is based on statistics aggregated over the region, resulting in richer and more stable descriptors than those computed at a point. Two texture matching applications of this descriptor are demonstrated: (1) it is used to automatically identify, regions of the same type of texture, but with varying surface pose, within a single image; (2) it is used to support wide baseline stereo, i.e. to enable the automatic computation of the epipolar geometry between two images acquired from quite separated viewpoints. Results are presented on several sets of real images.

218 citations

Journal ArticleDOI
TL;DR: It is demonstrated that high precision can be achieved by combining multiple sources of information, both visual and textual, by automatic generation of time stamped character annotation by aligning subtitles and transcripts.

218 citations

Proceedings ArticleDOI
17 Jun 2006
TL;DR: A visual alphabet representation which can be learnt incrementally, and explicitly shares boundary fragments and spatial configurations across object categories, and shows that category similarities can be predicted from the alphabet.
Abstract: We address the problem of multiclass object detection. Our aims are to enable models for new categories to benefit from the detectors built previously for other categories, and for the complexity of the multiclass system to grow sublinearly with the number of categories. To this end we introduce a visual alphabet representation which can be learnt incrementally, and explicitly shares boundary fragments (contours) and spatial configurations (relation to centroid) across object categories. We develop a learning algorithm with the following novel contributions: (i) AdaBoost is adapted to learn jointly, based on shape features; (ii) a new learning schedule enables incremental additions of new categories; and (iii) the algorithm learns to detect objects (instead of categorizing images). Furthermore, we show that category similarities can be predicted from the alphabet. We obtain excellent experimental results on a variety of complex categories over several visual aspects. We show that the sharing of shape features not only reduces the number of features required per category, but also often improves recognition performance, as compared to individual detectors which are trained on a per-class basis.

214 citations

Proceedings Article
05 Dec 2013
TL;DR: This paper proposes a version of the state-of-the-art Fisher vector image encoding that can be stacked in multiple layers, and significantly improves on standard Fisher vectors, and obtains competitive results with deep convolutional networks at a smaller computational learning cost.
Abstract: As massively parallel computations have become broadly available with modern GPUs, deep architectures trained on very large datasets have risen in popularity. Discriminatively trained convolutional neural networks, in particular, were recently shown to yield state-of-the-art performance in challenging image classification benchmarks such as ImageNet. However, elements of these architectures are similar to standard hand-crafted representations used in computer vision. In this paper, we explore the extent of this analogy, proposing a version of the state-of-the-art Fisher vector image encoding that can be stacked in multiple layers. This architecture significantly improves on standard Fisher vectors, and obtains competitive results with deep convolutional networks at a smaller computational learning cost. Our hybrid architecture allows us to assess how the performance of a conventional hand-crafted image classification pipeline changes with increased depth. We also show that convolutional networks and Fisher vector encodings are complementary in the sense that their combination further improves the accuracy.

209 citations

Book ChapterDOI
08 Sep 2018
TL;DR: It is demonstrated on this dataset, for a number of facial attribute classification tasks, that the algorithm can be used to remove racial biases from the network feature representation.
Abstract: Neural networks achieve the state-of-the-art in image classification tasks. However, they can encode spurious variations or biases that may be present in the training data. For example, training an age predictor on a dataset that is not balanced for gender can lead to gender biased predicitons (e.g. wrongly predicting that males are older if only elderly males are in the training set). We present two distinct contributions: (1) An algorithm that can remove multiple sources of variation from the feature representation of a network. We demonstrate that this algorithm can be used to remove biases from the feature representation, and thereby improve classification accuracies, when training networks on extremely biased datasets. (2) An ancestral origin database of 14,000 images of individuals from East Asia, the Indian subcontinent, sub-Saharan Africa, and Western Europe. We demonstrate on this dataset, for a number of facial attribute classification tasks, that we are able to remove racial biases from the network feature representation.

207 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations