scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
01 Jan 2015
TL;DR: A new state-of-the-art performance for cell counting on the standard synthetic image benchmarks is set and the potential of the FCRNs for providing cell detections for overlapping cells is shown.
Abstract: This paper concerns automated cell counting in microscopy images. The approach we take is to adapt Convolutional Neural Networks (CNNs) to regress a cell spatial density map across the image. This is applicable to situations where traditional single-cell segmentation based methods do not work well due to cell clumping or overlap. We make the following contributions: (i) we develop and compare architectures for two Fully Convolutional Regression Networks (FCRNs) for this task; (ii) since the networks are fully convolutional, they can predict a density map for an input image of arbitrary size, and we exploit this to improve efficiency at training time by training end-to-end on image patches; and (iii) we show that FCRNs trained entirely on synthetic data are able to give excellent predictions on real microscopy images without fine-tuning, and that the performance can be further improved by fine-tuning on the real images. We set a new state-of-the-art performance for cell counting on the standard synthetic image benchmarks and, as a side benefit, show the potential of the FCRNs for providing cell detections for overlapping cells.

85 citations

Proceedings Article
06 Dec 2010
TL;DR: A discriminative learning approach is developed, which proposes a structured output formulation for weakly annotated images where full annotations are treated as latent variables and proposes to optimize a ranking objective function, allowing the method to more effectively use negatively labeled images to improve detection average precision performance.
Abstract: A standard approach to learning object category detectors is to provide strong supervision in the form of a region of interest (ROI) specifying each instance of the object in the training images [17]. In this work are goal is to learn from heterogeneous labels, in which some images are only weakly supervised, specifying only the presence or absence of the object or a weak indication of object location, whilst others are fully annotated. To this end we develop a discriminative learning approach and make two contributions: (i) we propose a structured output formulation for weakly annotated images where full annotations are treated as latent variables; and (ii) we propose to optimize a ranking objective function, allowing our method to more effectively use negatively labeled images to improve detection average precision performance. The method is demonstrated on the benchmark INRIA pedestrian detection dataset of Dalal and Triggs [14] and the PASCAL VOC dataset [17], and it is shown that for a significant proportion of weakly supervised images the performance achieved is very similar to the fully supervised (state of the art) results.

85 citations

Book
03 Jan 1992
TL;DR: It is shown that for local viewer movements the concave/convex surface ambiguity can be resolved without knowledge of the light source position.
Abstract: We examine the information available from the motion of specularities (highlights) due to known movements by the viewer. In particular two new results are presented. Firstly, we show for local viewer movements the concave/convex surface ambiguity can be resolved without knowledge of the light source position. Secondly, we investigate what further geometrical information is obtained under extended viewer movements, from tracked motion of a specularity. We show the reflecting surface is constrained to coincide with a certain curve. However, there is some ambiguity the curve is a member of a one-parameter family. Fixing one point uniquely determines the curve.

83 citations

Journal ArticleDOI
TL;DR: A probabilistic method for segmenting instances of a particular object category within an image and provides a favorable comparison of the method with the state of the art in object category specific image segmentation, specifically the methods of Leibe and Schiele and Schoenemann and Cremers.
Abstract: We present a probabilistic method for segmenting instances of a particular object category within an image. Our approach overcomes the deficiencies of previous segmentation techniques based on traditional grid conditional random fields (CRF), namely that 1) they require the user to provide seed pixels for the foreground and the background and 2) they provide a poor prior for specific shapes due to the small neighborhood size of grid CRF. Specifically, we automatically obtain the pose of the object in a given image instead of relying on manual interaction. Furthermore, we employ a probabilistic model which includes shape potentials for the object to incorporate top-down information that is global across the image, in addition to the grid clique potentials which provide the bottom-up information used in previous approaches. The shape potentials are provided by the pose of the object obtained using an object category model. We represent articulated object categories using a novel layered pictorial structures model. Nonarticulated object categories are modeled using a set of exemplars. These object category models have the advantage that they can handle large intraclass shape, appearance, and spatial variation. We develop an efficient method, OBJCUT, to obtain segmentations using our probabilistic framework. Novel aspects of this method include: 1) efficient algorithms for sampling the object category models of our choice and 2) the observation that a sampling-based approximation of the expected log-likelihood of the model can be increased by a single graph cut. Results are presented on several articulated (e.g., animals) and nonarticulated (e.g., fruits) object categories. We provide a favorable comparison of our method with the state of the art in object category specific image segmentation, specifically the methods of Leibe and Schiele and Schoenemann and Cremers.

83 citations

Book ChapterDOI
02 Dec 2018
TL;DR: The model achieves competitive performance on cell and crowd counting datasets, and surpasses the state-of-the-art on the car dataset using only three training images, when training on the entire dataset, and outperforms all previous methods by a large margin.
Abstract: Nearly all existing counting methods are designed for a specific object class. Our work, however, aims to create a counting model able to count any class of object. To achieve this goal, we formulate counting as a matching problem, enabling us to exploit the image self-similarity property that naturally exists in object counting problems.

82 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations