scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
Book ChapterDOI
18 Jul 2002
TL;DR: It is demonstrated that wide baseline matching techniques can be successfully employed for this task by matching key frames between shots by representing each frame by a set of viewpoint invariant local feature vectors.
Abstract: We describe progress in matching shots which are images of the same 3D scene in a film. The problem is hard because the camera viewpoint may change substantially between shots, with consequent changes in the imaged appearance of the scene due to foreshortening, scale changes and partial occlusion.We demonstrate that wide baseline matching techniques can be successfully employed for this task by matching key frames between shots. The wide baseline method represents each frame by a set of viewpoint invariant local feature vectors. The local spatial support of the features means that segmentation of the frame (e.g. into foreground/background) is not required, and partial occlusion is tolerated.Results of matching shots for a number of different scene types are illustrated on a commercial film.

81 citations

Posted Content
TL;DR: A Deep Comparator Network is proposed that can ingest a pair of sets, and compute a similarity between the pair, and is Inspired by image retrieval, a novel hard sample mining regime is proposed to control the sampling process, such that the DCN is complementary to the standard image classification models.
Abstract: The objective of this work is set-based verification, e.g. to decide if two sets of images of a face are of the same person or not. The traditional approach to this problem is to learn to generate a feature vector per image, aggregate them into one vector to represent the set, and then compute the cosine similarity between sets. Instead, we design a neural network architecture that can directly learn set-wise verification. Our contributions are: (i) We propose a Deep Comparator Network (DCN) that can ingest a pair of sets (each may contain a variable number of images) as inputs, and compute a similarity between the pair--this involves attending to multiple discriminative local regions (landmarks), and comparing local descriptors between pairs of faces; (ii) To encourage high-quality representations for each set, internal competition is introduced for recalibration based on the landmark score; (iii) Inspired by image retrieval, a novel hard sample mining regime is proposed to control the sampling process, such that the DCN is complementary to the standard image classification models. Evaluations on the IARPA Janus face recognition benchmarks show that the comparator networks outperform the previous state-of-the-art results by a large margin.

80 citations

Proceedings ArticleDOI
01 Jan 1998
TL;DR: It is shown that structures that repeat in the world are related by particular parametrized transformations in perspective images, and these image transformations provide powerful grouping constraints, and can be used at the heart of hypothesize and verify grouping algorithms.
Abstract: The objective of this work is the automatic detection and grouping of imaged elements which repeat on a plane in a scene (for example tiled floorings). It is shown that structures that repeat on a scene plane are related by particular parametrized transformations in perspective images. These image transformations provide powerful grouping constraints, and can be used at the heart of hypothesize and verify grouping algorithms. The parametrized transformations are global across the image plane and may be computed without knowledge of the pose of the plane or camera calibration. Parametrized transformations are given for severalcl asses of repeating operation in the world as well as groupers based on these. These groupers are demonstrated on a number of real images, where both the elements and the grouping are determined automatically. It is shown that the repeating element can be learnt from the image, and hence provides an image descriptor. Also, information on the plane pose, such as its vanishing line, can be recovered from the grouping.

79 citations

Journal ArticleDOI
TL;DR: A multi‐task fully convolutional neural network architecture is proposed to address the problem of 3D fetal brain localization, structural segmentation, and alignment to a referential coordinate system and shows good structural correspondence between fetal anatomies.

79 citations

Journal Article
TL;DR: TriCoS as discussed by the authors is a co-segmentation algorithm that looks at all training images jointly and automatically segments out the most class-discriminative foregrounds for each image.
Abstract: The aim of this paper is to leverage foreground segmentation to improve classification performance on weakly annotated datasets – those with no additional annotation other than class labels. We introduce TriCoS, a new co-segmentation algorithm that looks at all training images jointly and automatically segments out the most class-discriminative foregrounds for each image. Ultimately, those foreground segmentations are used to train a classification system. TriCoS solves the co-segmentation problem by minimizing losses at three different levels: the category level for foreground/background consistency across images belonging to the same category, the image level for spatial continuity within each image, and the dataset level for discrimination between classes. In an extensive set of experiments, we evaluate the algorithm on three benchmark datasets: the UCSD-Caltech Birds-200-2010, the Stanford Dogs, and the Oxford Flowers 102. With the help of a modern image classifier, we show superior performance compared to previously published classification methods and other co-segmentation methods.

79 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations