scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
Proceedings ArticleDOI
01 Sep 1999
TL;DR: This paper investigates the multiple view geometry of smooth surfaces and a plane, where the plane provides a planar homography mapping between the views, and new solutions are given for the computation of epipolar and trifocal geometry for this type of scene.
Abstract: This paper investigates the multiple view geometry of smooth surfaces and a plane, where the plane provides a planar homography mapping between the views. Innovations are made in three areas: first, new solutions are given for the computation of epipolar and trifocal geometry for this type of scene. In particular it is shown that the epipole may be determined from bitangents between the homography registered occluding contours, and a new minimal solution is given for computing the trifocal tensor: Second, algorithms are demonstrated for automatically estimating the fundamental matrix and trifocal tensor from images of such scenes. Third, a method is developed for estimating camera matrices for a sequence of images of these scenes. These three areas are combined in a "freehand scanner" application where 3D texture-mapped graphical models of smooth objects are acquired directly from a video sequence of the object and plane.

44 citations

Proceedings ArticleDOI
01 Jan 2017
TL;DR: In this article, a semi-supervised learning approach was proposed to identify characters in TV and feature film material using a cast list of actors from freely available sources on the web, providing a form of partial supervision.
Abstract: The goal of this paper is the automatic identification of characters in TV and feature film material. In contrast to standard approaches to this task, which rely on the weak supervision afforded by transcripts and subtitles, we propose a new method requiring only a cast list. This list is used to obtain images of actors from freely available sources on the web, providing a form of partial supervision for this task. In using images of actors to recognize characters, we make the following three contributions: (i) We demonstrate that an automated semi-supervised learning approach is able to adapt from the actor's face to the character's face, including the face context of the hair; (ii) By building voice models for every character, we provide a bridge between frontal faces (for which there is plenty of actor-level supervision) and profile (for which there is very little or none); and (iii) by combining face context and speaker identification, we are able to identify characters with partially occluded faces and extreme facial poses. Results are presented on the TV series 'Sherlock' and the feature film 'Casablanca'. We achieve the state-of-the-art on the Casablanca benchmark, surpassing previous methods that have used the stronger supervision available from transcripts.

43 citations

Posted Content
TL;DR: The VoxCeleb Speaker Recognition Challenge 2019 aimed to assess how well current speaker recognition technology is able to identify speakers in unconstrained or `in the wild' data and provided its baselines, results and discussions.
Abstract: The VoxCeleb Speaker Recognition Challenge 2019 aimed to assess how well current speaker recognition technology is able to identify speakers in unconstrained or `in the wild' data. It consisted of: (i) a publicly available speaker recognition dataset from YouTube videos together with ground truth annotation and standardised evaluation software; and (ii) a public challenge and workshop held at Interspeech 2019 in Graz, Austria. This paper outlines the challenge and provides its baselines, results and discussions.

43 citations

Journal Article
TL;DR: In this article, a class-specific edge classification method is proposed to prune edges which are not relevant to the object class, and thereby improve the performance of subsequent processing, and demonstrate learning class specific edges for a number of object classes under challenging scale and illumination variation.
Abstract: Recent research into recognizing object classes (such as humans, cows and hands) has made use of edge features to hypothesize and localize class instances. However, for the most part, these edge-based methods operate solely on the geometric shape of edges, treating them equally and ignoring the fact that for certain object classes, the appearance of the object on the inside of the edge may provide valuable recognition cues. We show how. for such object classes, small regions around edges can be used to classify the edge into object or non-object. This classifier may then be used to prune edges which are not relevant to the object class, and thereby improve the performance of subsequent processing. We demonstrate learning class specific edges for a number of object classes -oranges, bananas and bottles - under challenging scale and illumination variation. Because class-specific edge classification provides a low-level analysis of the image it may be integrated into any edge-based recognition strategy without significant change in the high-level algorithms. We illustrate its application to two algorithms: (i) chamfer matching for object detection, and (ii) modulating contrast terms in MRF based object-specific segmentation. We show that performance of both algorithms (matching and segmentation) is considerably improved by the class-specific edge labelling.

43 citations

Journal ArticleDOI
TL;DR: It is demonstrated that mutual illumination can form a major component of image radiance, and it is argued that discontinuities in radiance are an important shape cue, because they bear a tractable relationship to three dimensional shape.

43 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations