scispace - formally typeset
Search or ask a question
Author

Andrew Zisserman

Other affiliations: University of Edinburgh, Microsoft, University of Leeds  ...read more
Bio: Andrew Zisserman is an academic researcher from University of Oxford. The author has contributed to research in topics: Real image & Convolutional neural network. The author has an hindex of 167, co-authored 808 publications receiving 261717 citations. Previous affiliations of Andrew Zisserman include University of Edinburgh & Microsoft.


Papers
More filters
Proceedings ArticleDOI
01 Jan 2011
TL;DR: A rigorous evaluation of novel encodings for bag of visual words models by identifying both those aspects of each method which are particularly important to achieve good performance, and those aspects which are less critical, which allows a consistent comparative analysis of these encoding methods.
Abstract: A large number of novel encodings for bag of visual words models have been proposed in the past two years to improve on the standard histogram of quantized local features. Examples include locality-constrained linear encoding [23], improved Fisher encoding [17], super vector encoding [27], and kernel codebook encoding [20]. While several authors have reported very good results on the challenging PASCAL VOC classification data by means of these new techniques, differences in the feature computation and learning algorithms, missing details in the description of the methods, and different tuning of the various components, make it impossible to compare directly these methods and hard to reproduce the results reported. This paper addresses these shortcomings by carrying out a rigorous evaluation of these new techniques by: (1) fixing the other elements of the pipeline (features, learning, tuning); (2) disclosing all the implementation details, and (3) identifying both those aspects of each method which are particularly important to achieve good performance, and those aspects which are less critical. This allows a consistent comparative analysis of these encoding methods. Several conclusions drawn from our analysis cannot be inferred from the original publications.

980 citations

Proceedings ArticleDOI
26 Dec 2007
TL;DR: This paper brings query expansion into the visual domain via two novel contributions: strong spatial constraints between the query image and each result allow us to accurately verify each return, suppressing the false positives which typically ruin text-based query expansion.
Abstract: Given a query image of an object, our objective is to retrieve all instances of that object in a large (1M+) image database. We adopt the bag-of-visual-words architecture which has proven successful in achieving high precision at low recall. Unfortunately, feature detection and quantization are noisy processes and this can result in variation in the particular visual words that appear in different images of the same object, leading to missed results. In the text retrieval literature a standard method for improving performance is query expansion. A number of the highly ranked documents from the original query are reissued as a new query. In this way, additional relevant terms can be added to the query. This is a form of blind rele- vance feedback and it can fail if 'outlier' (false positive) documents are included in the reissued query. In this paper we bring query expansion into the visual domain via two novel contributions. Firstly, strong spatial constraints between the query image and each result allow us to accurately verify each return, suppressing the false positives which typically ruin text-based query expansion. Secondly, the verified images can be used to learn a latent feature model to enable the controlled construction of expanded queries. We illustrate these ideas on the 5000 annotated image Oxford building database together with more than 1M Flickr images. We show that the precision is substantially boosted, achieving total recall in many cases.

966 citations

Proceedings ArticleDOI
20 Aug 2017
TL;DR: This paper proposes a fully automated pipeline based on computer vision techniques to create a large scale text-independent speaker identification dataset collected 'in the wild', and shows that a CNN based architecture obtains the best performance for both identification and verification.
Abstract: Most existing datasets for speaker identification contain samples obtained under quite constrained conditions, and are usually hand-annotated, hence limited in size. The goal of this paper is to generate a large scale text-independent speaker identification dataset collected 'in the wild'. We make two contributions. First, we propose a fully automated pipeline based on computer vision techniques to create the dataset from open-source media. Our pipeline involves obtaining videos from YouTube; performing active speaker verification using a two-stream synchronization Convolutional Neural Network (CNN), and confirming the identity of the speaker using CNN based facial recognition. We use this pipeline to curate VoxCeleb which contains hundreds of thousands of 'real world' utterances for over 1,000 celebrities. Our second contribution is to apply and compare various state of the art speaker identification techniques on our dataset to establish baseline performance. We show that a CNN based architecture obtains the best performance for both identification and verification.

947 citations

Book
21 Aug 1992
TL;DR: In this paper, Abhyankar et al. proposed a geometric interpretation of joint conic invariants, and presented an experimental evaluation of projective invariants for curves in two and three dimensions.
Abstract: Part 1 Foundations: algebraic invariants - invariant theory and enumerative combinatorics of young tableaux, Shreeram S. Abhyankar, geometric interpretation of joint conic invariants, Joseph L. Mundy, et al, an experimental evaluation of projective invariants, Christopher Coelho, et al the projection of two non-coplanar conics, Stephen J. Maybank the non-existence of general-case view-invariants, J. Brian Burns, et al invariants of non-algebraic curves - noise resistant invariants of curves, Isaac Weiss, semi-differential invariants, Luc J. Van Gool, et al, projective invariants for curves in two and three dimensions, Michael H. Brill, et al, numerical evaluation of differential and semi-differential invariants, Christopher Brown, recognizing general curved objects efficiently, Andrew Zisserman, et al fitting affine invariant conics to curves, Deepak Kapur and Joseph L. Mundy, projectively invariant decomposition of planar shapes, Stefan Carlsson invariants from multiple views - invariant linear methods in photogrammetry and model-matching, Eamon B. Barrett, et al semi-differential invariants for nonplanar curves, Luc J. Van Gool, et al disambiguating stereo matches with spatio-temporal surfaces, Olivier Faugeras and Theo Papadopoulo. Part 2 Applications: transformation invariant indexing, Haim J. Wolfson and Yehezkel Lamdan affine invariants for model-based recognition, John E. Hopcroft, et al object recognition based on moment (or algebraic) invariants, Gabriel Taubin and David B. Cooper fast recognition using algebraic invariants, Charles A. Rothwell, et al toward 3D curved object recognition from image contours, Jean Ponce and David J. Kriegman relative positioning with uncalibrated cameras, Roger Mohr, et al. Appendix: projective geometry for machine vision, Joseph L. Mundy and Andrew Zisserman.

900 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations