scispace - formally typeset

Author

Andrews Nirmala Grace

Bio: Andrews Nirmala Grace is an academic researcher from VIT University. The author has contributed to research in topic(s): Graphene & Cyclic voltammetry. The author has an hindex of 31, co-authored 97 publication(s) receiving 3183 citation(s).

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Abstract: Water pollution by various toxic contaminants has become one of the most serious problems worldwide. Various technologies have been used to treat water and waste water including chemical precipitation, ion-exchange, adsorption, membrane filtration, coagulation–flocculation, flotation and electrochemical methods. From past few decades, nanotechnology has gained wide attention and various nanomaterials have been developed for the water remediation. In the present review article, various nanomaterials have been reviewed which have been used for water decontamination. The special emphasis in the review has been given on adsorption, photocatalytic and antibacterial activity of nanomaterials.

667 citations

Journal ArticleDOI
Abstract: Zinc sulfide decorated graphene nanocomposites are synthesized by a facile solvothermal approach and the prepared composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), High Resolution Transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR), Ultraviolet visible spectroscopy (UV), Photoluminescence spectroscopy (PL) and Raman spectrum. Results show the effective reduction of graphene oxide (GO) to graphene and decoration of ZnS nanoparticles on graphene sheets. Towards supercapacitor applications, the electrochemical measurements of different electrodes are performed in 6 M KOH electrolyte. A series of composites with different loadings of graphene is synthesized and tested for its electrochemical properties. The specific capacitance of the electrodes are evaluated from cyclic voltammetry (CV) studies and a maximum specific capacitance of 197.1 F/g is achieved in ZnS/G-60 electrode (60 indicates the weight ratio of GO) at scan rate of 5 mV s −1 . A capacitance retention of about 94.1% is observed even after 1000 cycles for ZnS/G-60 electrode, suggesting the long time cyclic stability of the composite electrode. Galvanostatic charge–discharge curves show the highly reversible process of ZnS/G-60 electrode. Electrochemical Impedance Spectrum (EIS) shows a high conductivity of composite electrode suggesting that the composites are good candidates for energy storage.

132 citations

Journal ArticleDOI
Abstract: Graphene manganese ferrite (MnFe2O4-G) composite was prepared by a solvothermal process. The as-prepared graphene manganese ferrite composite was tested for the adsorption of lead (Pb(II)) and cadmium (Cd(II)) ions by analytical methods under diverse experimental parameters. With respect to contact time measurements, the adsorption of Pb and Cd ions increased and reached equilibrium within 120 and 180 min at 37 °C with a maximum adsorption at pH 5 and 7 respectively. The Langmuir model correlates to the experimental data showing an adsorption capacity of 100 for Pb(II) and 76.90 mg g−1 for Cd(II) ions. Thermodynamic studies revealed that the adsorption of Pb and Cd ions onto MnFe2O4-G was spontaneous, exothermic and feasible in the range of 27–47 °C. Cytotoxicity behavior of graphene against bacterial cell membrane is well known. To better understand its antimicrobial mechanism, the antibacterial activity of graphene and MnFe2O4-G nanocomposite was compared. Under similar concentration and incubation conditions, nanocomposite MnFe2O4-G dispersion showed the highest antibacterial activity of 82%, as compared to graphene showing 37% cell loss. Results showed that the prepared composite possess good adsorption efficiency and thus could be considered as an excellent material for removal of toxic heavy metal ions as explained by adsorption isotherm. Hence MnFe2O4-G can be used as an adsorbent as well as an antimicrobial agent.

117 citations

Journal ArticleDOI
Abstract: CuS nanostructures have been prepared by hydrothermal route using copper nitrate and thiourea as copper and sulfur precursors. Investigations were done to probe the effect of cationic surfactant viz. cetyl trimethyl ammonium bromide on the morphology of the products. Further studies have been done to know the influence of reaction time on the morphology of CuS nanostructures. Results demonstrated that the morphology of CuS was influenced by the reaction time and surfactant. X-ray diffraction pattern showed that the as-prepared CuS nanostructures were in pure hexagonal phase and UV–vis spectra reveal a strong absorption in the visible region of 400–800 nm. A detailed mechanism has been elucidated for the growth of CuS nanostructures. The photocatalytic activity was evaluated by the decolorization of methylene blue (MB) dye under visible-light irradiation and results showed that 87% of the dye was degraded. Thus the as-prepared CuS catalysts are highly promising materials for photocatalytic applications towards dye degradation.

100 citations

Journal ArticleDOI
Abstract: Graphene–Fe3O4 (G–Fe3O4) composite was prepared from graphene oxide (GO) and FeCl3·6H2O by a one-step solvothermal route. The as-prepared composite was characterized by field-emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering and X-ray powder diffraction. SEM analysis shows the presence of Fe3O4 spheres with size ranging between 200 and 250 nm, which are distributed and firmly anchored onto the wrinkled graphene layers with a high density. The resulting G–Fe3O4 composite shows extraordinary adsorption capacity and fast adsorption rates for the removal of Pb metal ions and organic dyes from aqueous solution. The adsorption isotherm and thermodynamics were investigated in detail, and the results show that the adsorption data was best fitted with the Langmuir adsorption isotherm model. From the thermodynamics investigation, it was found that the adsorption process is spontaneous and endothermic in nature. Thus, the as-prepared composite can be effectively utilized for the removal of various heavy metal ions and organic dyes. Simultaneously, the photodegradation of methylene blue was studied, and the recycling degradation capacity of dye by G–Fe3O4 was analyzed up to 5 cycles, which remained consistent up to ∼97% degradation of the methylene blue dye. Although iron oxide has an affinity towards bacterial cells, its composite with graphene still show antibacterial property. Almost 99.56% cells were viable when treated with Fe3O4 nanoparticle, whereas with the composite barely 3% cells survived. Later, the release of ROS was also investigated by membrane and oxidative stress assay. Total protein degradation was analyzed to confirm the effect of the G–Fe3O4 composite on E. coli cells.

95 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

30,199 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

24,496 citations

Posted Content
TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Abstract: We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Mn3O4 nanoparticles grown selectively on RGO sheets over free particle growth in solution allowed for the electrically insulating Mn3O4 nanoparticles wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ~900mAh/g near its theoretical capacity with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles grown atop. The Mn3O4/RGO hybrid could be a promising candidate material for high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for design and synthesis of battery electrodes based on highly insulating materials.

1,587 citations

Journal ArticleDOI
TL;DR: Several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction.
Abstract: In view of the climate changes caused by the continuously rising levels of atmospheric CO2 , advanced technologies associated with CO2 conversion are highly desirable. In recent decades, electrochemical reduction of CO2 has been extensively studied since it can reduce CO2 to value-added chemicals and fuels. Considering the sluggish reaction kinetics of the CO2 molecule, efficient and robust electrocatalysts are required to promote this conversion reaction. Here, recent progress and opportunities in inorganic heterogeneous electrocatalysts for CO2 reduction are discussed, from the viewpoint of both experimental and computational aspects. Based on elemental composition, the inorganic catalysts presented here are classified into four groups: metals, transition-metal oxides, transition-metal chalcogenides, and carbon-based materials. However, despite encouraging accomplishments made in this area, substantial advances in CO2 electrolysis are still needed to meet the criteria for practical applications. Therefore, in the last part, several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction.

818 citations

Journal ArticleDOI
TL;DR: Detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents - i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes) is presented.
Abstract: The problem of water pollution is of a great concern. Adsorption is one of the most efficient techniques for removing noxious heavy metals from the solvent phase. This paper presents a detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents – i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes). In addition to this, the efficiency of developed materials for adsorption of the heavy metals is discussed in detail along with the comparison of their maximum adsorption capacity in tabular form. A special focus is made on the perspectives of further wider applications of nanostructured adsorbents (especially, carbon nanotubes and graphenes) in wastewater treatment.

702 citations