scispace - formally typeset
Search or ask a question
Author

Andrey D. Volgin

Bio: Andrey D. Volgin is an academic researcher from Saint Petersburg State University. The author has contributed to research in topics: Zebrafish & Model organism. The author has an hindex of 11, co-authored 21 publications receiving 271 citations. Previous affiliations of Andrey D. Volgin include Southwest University & Military Medical Academy.

Papers
More filters
Journal ArticleDOI
TL;DR: Current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high‐throughput drug screening are discussed.
Abstract: The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.

45 citations

Journal ArticleDOI
TL;DR: Zebrafish is discussed as a promising complementary translational tool to further advance patient‐centered personalized psychiatry andMounting evidence supports zebrafish as a useful model organism in CNS research.
Abstract: Currently becoming widely recognized, personalized psychiatry focuses on unique physiological and genetic profiles of patients to best tailor their therapy. However, the role of individual differences, as well as genetic and environmental factors, in human psychiatric disorders remains poorly understood. Animal experimental models are a valuable tool to improve our understanding of disease pathophysiology and its molecular mechanisms. Due to high reproduction capability, fully sequenced genome, easy gene editing, and high genetic and physiological homology with humans, zebrafish (Danio rerio) are emerging as a novel powerful model in biomedicine. Mounting evidence supports zebrafish as a useful model organism in CNS research. Robustly expressed in these fish, individual, strain, and sex differences shape their CNS responses to genetic, environmental, and pharmacological manipulations. Here, we discuss zebrafish as a promising complementary translational tool to further advance patient-centered personalized psychiatry.

44 citations

Journal ArticleDOI
TL;DR: It is argued that zebrafish-based models represent an excellent translational tool to understand aggressive behaviors and related pathobiological brain mechanisms and their genetic, pharmacological and environmental modulation.

44 citations

Journal ArticleDOI
TL;DR: Given the growing clinical importance of anti-M deliriant hallucinogens, the use and abuse, clinical importance, and the growing value in preclinical (experimental) animal models relevant to modeling CNS functions and dysfunctions are discussed.
Abstract: Anticholinergic drugs based on tropane alkaloids, including atropine, scopolamine, and hyoscyamine, have been used for various medicinal and toxic purposes for millennia. These drugs are competitive antagonists of acetylcholine muscarinic (M-) receptors that potently modulate the central nervous system (CNS). Currently used clinically to treat vomiting, nausea, and bradycardia, as well as alongside other anesthetics to avoid vagal inhibition, these drugs also evoke potent psychotropic effects, including characteristic delirium-like states with hallucinations, altered mood, and cognitive deficits. Given the growing clinical importance of anti-M deliriant hallucinogens, here we discuss their use and abuse, clinical importance, and the growing value in preclinical (experimental) animal models relevant to modeling CNS functions and dysfunctions.

41 citations

Journal ArticleDOI
TL;DR: The importance of arecoline is supported by its being the world's fourth most commonly used human psychoactive substance (after alcohol, nicotine, and caffeine) and social and historical aspects of its use and abuse.
Abstract: Arecoline is a naturally occurring psychoactive alkaloid from areca (betel) nuts of the areca palm ( Areca catechu) endemic to South and Southeast Asia. A partial agonist of nicotinic and muscarinic acetylcholine receptors, arecoline evokes multiple effects on the central nervous system (CNS), including stimulation, alertness, elation, and anxiolysis. Like nicotine, arecoline also evokes addiction and withdrawal symptoms (upon discontinuation). The abuse of areca nuts is widespread, with over 600 million users globally. The importance of arecoline is further supported by its being the world's fourth most commonly used human psychoactive substance (after alcohol, nicotine, and caffeine). Here, we discuss neuropharmacology, pharmacokinetics, and metabolism of arecoline, as well as social and historical aspects of its use and abuse. Paralleling clinical findings, we also evaluate its effects in animal models and outline future clinical and preclinical CNS research in this field.

37 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors show that egfl7 mutants do not show any obvious phenotypes while animals injected with egfl 7 morpholino (morphants) exhibit severe vascular defects, indicating that the activation of a compensatory network to buffer against deleterious mutations was not observed after translational or transcriptional knockdown.
Abstract: Cells sense their environment and adapt to it by fine-tuning their transcriptome. Wired into this network of gene expression control are mechanisms to compensate for gene dosage. The increasing use of reverse genetics in zebrafish, and other model systems, has revealed profound differences between the phenotypes caused by genetic mutations and those caused by gene knockdowns at many loci, an observation previously reported in mouse and Arabidopsis. To identify the reasons underlying the phenotypic differences between mutants and knockdowns, we generated mutations in zebrafish egfl7, an endothelial extracellular matrix gene of therapeutic interest, as well as in vegfaa. Here we show that egfl7 mutants do not show any obvious phenotypes while animals injected with egfl7 morpholino (morphants) exhibit severe vascular defects. We further observe that egfl7 mutants are less sensitive than their wild-type siblings to Egfl7 knockdown, arguing against residual protein function in the mutants or significant off-target effects of the morpholinos when used at a moderate dose. Comparing egfl7 mutant and morphant proteomes and transcriptomes, we identify a set of proteins and genes that are upregulated in mutants but not in morphants. Among them are extracellular matrix genes that can rescue egfl7 morphants, indicating that they could be compensating for the loss of Egfl7 function in the phenotypically wild-type egfl7 mutants. Moreover, egfl7 CRISPR interference, which obstructs transcript elongation and causes severe vascular defects, does not cause the upregulation of these genes. Similarly, vegfaa mutants but not morphants show an upregulation of vegfab. Taken together, these data reveal the activation of a compensatory network to buffer against deleterious mutations, which was not observed after translational or transcriptional knockdown.

774 citations

Journal ArticleDOI
04 Nov 1988-Science

221 citations

01 Jan 2005
TL;DR: (depression)是一种精神障碍(mood sidorder)的范畴,它是常见 病多发病(Depression) ,或情感障 碍L属于情绪或心境障 (moodsidorder)
Abstract: 抑郁(depression)是一种精神障碍,或情感障碍,属于情绪或心境障碍(mood sidorder)的范畴,它是常见病多发病。据世界卫生组织(WHO)统计终身患病率3%~5%,美国5%~6%,约1200万人,另有17%的人曾有过抑郁体验。我国卫生部2001年公布的数字,尤其是老年人中比例更高。抑郁症又是一种可危及生命的疾病,10%的抑郁症患者产生自杀企图,15%的重症抑郁症患者最后死于自杀。

84 citations

Journal ArticleDOI
TL;DR: The evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders is explored, while summarizing relevant experimental tools and assays are discussed.
Abstract: Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.

58 citations

Journal ArticleDOI
TL;DR: There is ample evidence to demonstrate that it is highly likely that fish experience pain and that pain-related behavioural changes are conserved across vertebrates.
Abstract: In order to survive, animals must avoid injury and be able to detect potentially damaging stimuli via nociceptive mechanisms. If the injury is accompanied by a negative affective component, future behaviour should be altered and one can conclude the animal experienced the discomfort associated with pain. Fishes are the most successful vertebrate group when considering the number of species that have filled a variety of aquatic niches. The empirical evidence for nociception in fishes from the underlying molecular biology, neurobiology and anatomy of nociceptors through to whole animal behavioural responses is reviewed to demonstrate the evolutionary conservation of nociception and pain from invertebrates to vertebrates. Studies in fish have shown that the biology of the nociceptive system is strikingly similar to that found in mammals. Further, potentially painful events result in behavioural and physiological changes such as reduced activity, guarding behaviour, suspension of normal behaviour, increased ventilation rate and abnormal behaviours which are all prevented by the use of pain-relieving drugs. Fish also perform competing tasks less well when treated with a putative painful stimulus. Therefore, there is ample evidence to demonstrate that it is highly likely that fish experience pain and that pain-related behavioural changes are conserved across vertebrates. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

57 citations