scispace - formally typeset
Search or ask a question
Author

Andrey P. Fokin

Bio: Andrey P. Fokin is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Gyrotron & Terahertz radiation. The author has an hindex of 12, co-authored 89 publications receiving 532 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A 263 GHz continuous-wave gyrotron developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers and the possibility of frequency tuning by variation of the coolant temperature was demonstrated.
Abstract: A 263 GHz continuous-wave (CW) gyrotron was developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers A new experimental facility with a computerized control was built to test this and subsequent gyrotrons We obtained the maximum CW power up to 1 kW in the 15 kV/04 A operation regime The power about 10 W, which is sufficient for many spectroscopic applications, was realized in the low current 14 kV/002 A regime The possibility of frequency tuning by variation of the coolant temperature about 4 MHz/1 °C was demonstrated The spectral width of the gyrotron radiation was about 10−6

103 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the precise frequency stability of a high-power sub-THz gyrotron can be achieved by a phase-lock loop in the anode voltage control, confirming its potential for ultra-high precision spectroscopy, the development of sources with large-scale radiating apertures, and other new projects.
Abstract: Many state-of-the-art fundamental and industrial projects need the use of terahertz radiation with high power and small linewidth. Gyrotrons as radiation sources provide the desired level of power in the sub-THz and THz frequency range, but have substantial free-running frequency fluctuations of the order of 10-4. Here, we demonstrate that the precise frequency stability of a high-power sub-THz gyrotron can be achieved by a phase-lock loop in the anode voltage control. The relative width of the frequency spectrum and the frequency stability obtained for a 0.263 THz/100 W gyrotron are 4 × 10-12 and 10-10, respectively, and these parameters are better than those demonstrated so far with high-power sources by almost three orders of magnitude. This approach confirms its potential for ultra-high precision spectroscopy, the development of sources with large-scale radiating apertures, and other new projects.

60 citations

Journal ArticleDOI
TL;DR: The probabilistic distribution of pressure magnitude from individual bubbles was found to obey Zipf's law for low concentrations of nanoparticles, while increasing their concentration brings the pressure magnitude distribution into conformance with the Gaussian law.
Abstract: We present a physical model that explains several sequential stages of the conversion of optical to acoustical energy when irradiating diluted suspensions of metal nanoparticles with laser pulses. Optical absorption and scattering of a single particle driven by plasmon resonance interactions in an aqueous medium are considered. Thermal effects produced by laser-irradiated nanoparticles, dynamics of vapor bubble formation, and acoustic signals from expanding bubbles formed around heated nanoparticles are calculated. Stochastic features of the pressure magnitude emitted as a result of low-fluence irradiation of suspensions are also discussed. The probabilistic distribution of pressure magnitude from individual bubbles was found to obey Zipf's law for low concentrations of nanoparticles, while increasing their concentration brings the pressure magnitude distribution into conformance with the Gaussian law.

58 citations

Journal ArticleDOI
TL;DR: The results of the preliminary experimental tests in a pulsed mode of operation are presented and the microwave power of up to 330 kW with an efficiency of 30% without collector depression was obtained.
Abstract: A 250 GHz continuous-wave (CW) gyrotron has been developed at the IAP RAS jointly with GYCOM Ltd., as a prototype of the microwave source for the envisaged prospective nuclear fusion power plants (DEMO). The main applications of such a tube are electron cyclotron resonance heating and electron cyclotron resonance current drive of magnetically confined plasma as well as its diagnostics based on collective Thomson scattering in various reactors for controlled thermonuclear fusion (e.g., tokamaks and stellarators). The results of the preliminary experimental tests in a pulsed mode of operation are presented. The microwave power of up to 330 kW with an efficiency of 30% without collector depression was obtained. At an accelerating voltage of 55 kV and an electron beam current of 12.5 A (which corresponds to the design parameters for CW operation), the measured output power was about 200 kW. The TEM00 mode content evaluated at the tube output is not less than 98.6%.

53 citations

Journal ArticleDOI
01 Nov 2017-Vacuum
TL;DR: In this article, the use of a subterahertz gyrotron setup with output frequency of 263 GHz and a nominal power of 1kW as a radiation source to obtain nanoscale particles of metal oxides by the evaporation-condensation technique is demonstrated.

23 citations


Cited by
More filters
01 Sep 1994
TL;DR: In this article, the authors present a review of Charged Particle Dynamics and Focusing Systems without Space Charge, including Linear Beam Optics with Space Charge and Self-Consistent Theory of Beams.
Abstract: Review of Charged Particle Dynamics. Beam Optics and Focusing Systems Without Space Charge. Linear Beam Optics with Space Charge. Self-Consistent Theory of Beams. Emittance Variation. Beam Physics Research from 1993 to 2007. Appendices. List of Frequently Used Symbols. Bibliography. Index.

1,311 citations

01 Jan 2017
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as mentioned in this paper provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

690 citations

Journal ArticleDOI
TL;DR: It is demonstrated in phantom and animal studies that photoacoustic nanodroplets act as dual-contrast agents for both photoacoustics and ultrasound imaging through optically triggered vaporization.
Abstract: Since being discovered by Alexander Bell, photoacoustics may again be seeing major resurgence in biomedical imaging. Photoacoustics is a non-ionizing, functional imaging modality capable of high contrast images of optical absorption at depths significantly greater than traditional optical imaging techniques. Optical contrast agents have been used to extend photoacoustics to molecular imaging. Here we introduce an exogenous contrast agent that utilizes vaporization for photoacoustic signal generation, providing significantly higher signal amplitude than that from the traditionally used mechanism, thermal expansion. Our agent consists of liquid perfluorocarbon nanodroplets with encapsulated plasmonic nanoparticles, entitled photoacoustic nanodroplets. Upon pulsed laser irradiation, liquid perfluorocarbon undergoes a liquid-to-gas phase transition generating giant photoacoustic transients from these dwarf nanoparticles. Once triggered, the gaseous phase provides ultrasound contrast enhancement. We demonstrate in phantom and animal studies that photoacoustic nanodroplets act as dual-contrast agents for both photoacoustic and ultrasound imaging through optically triggered vaporization.

376 citations

Journal ArticleDOI
TL;DR: In this paper, the authors seek the attention of young scholars and experts working in the field of heat transfer by discussing the applications and challenges of hybrid nanofluids with a concise discussion on its history, synthesis techniques, thermophysical properties, research gaps, future directions, current status, and the leading groups, organizations and countries around the world.

312 citations

Journal ArticleDOI
TL;DR: A review of the development of high-power gyrotron oscillators for long-pulse or CW operation and pulsed gyrotrons for many applications can be found in this article.
Abstract: This paper presents a review of the experimental achievements related to the development of high-power gyrotron oscillators for long-pulse or CW operation and pulsed gyrotrons for many applications. In addition, this work gives a short overview on the present development status of frequency step-tunable and multi-frequency gyrotrons, coaxial-cavity multi-megawatt gyrotrons, gyrotrons for technological and spectroscopy applications, relativistic gyrotrons, large orbit gyrotrons (LOGs), quasi-optical gyrotrons, fast- and slow-wave cyclotron autoresonance masers (CARMs), gyroklystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWOs, gyro-harmonic converters, gyro-peniotrons, magnicons, free electron masers (FEMs), and dielectric vacuum windows for such high-power mm-wave sources. Gyrotron oscillators (gyromonotrons) are mainly used as high-power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control, and diagnostics of magnetically confined plasmas for clean generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt-class gyrotrons employing synthetic diamond output windows is 30 min (CPI and European KIT-SPC-THALES collaboration). The world record parameters of the European tube are as follows: 0.92 MW output power at 30-min pulse duration, 97.5% Gaussian mode purity, and 44% efficiency, employing a single-stage depressed collector (SDC) for energy recovery. A maximum output power of 1.5 MW in 4.0-s pulses at 45% efficiency was generated with the QST-TOSHIBA (now CANON) 110-GHz gyrotron. The Japan 170-GHz ITER gyrotron achieved 1 MW, 800 s at 55% efficiency and holds the energy world record of 2.88 GJ (0.8 MW, 60 min) and the efficiency record of 57% for tubes with an output power of more than 0.5 MW. The Russian 170-GHz ITER gyrotron obtained 0.99 (1.2) MW with a pulse duration of 1000 (100) s and 53% efficiency. The prototype tube of the European 2-MW, 170-GHz coaxial-cavity gyrotron achieved in short pulses the record power of 2.2 MW at 48% efficiency and 96% Gaussian mode purity. Gyrotrons with pulsed magnet for various short-pulse applications deliver Pout = 210 kW with τ = 20 μs at frequencies up to 670 GHz (η ≅ 20%), Pout = 5.3 kW at 1 THz (η = 6.1%), and Pout = 0.5 kW at 1.3 THz (η = 0.6%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require tubes with the following parameters: f > 24 GHz, Pout = 4–50 kW, CW, η > 30%. The CW powers produced by gyroklystrons and FEMs are 10 kW (94 GHz) and 36 W (15 GHz), respectively. The IR FEL at the Thomas Jefferson National Accelerator Facility in the USA obtained a record average power of 14.2 kW at a wavelength of 1.6 μm. The THz FEL (NOVEL) at the Budker Institute of Nuclear Physics in Russia achieved a maximum average power of 0.5 kW at wavelengths 50–240 μm (6.00–1.25 THz).

279 citations