scispace - formally typeset
Search or ask a question
Author

Andries Kruger

Bio: Andries Kruger is an academic researcher from South African Weather Service. The author has contributed to research in topics: Wind speed & Climate change. The author has an hindex of 24, co-authored 60 publications receiving 7367 citations. Previous affiliations of Andries Kruger include Stellenbosch University & University of Cape Town.


Papers
More filters
Journal ArticleDOI
TL;DR: The Twentieth Century Reanalysis (20CR) dataset as discussed by the authors provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions.
Abstract: The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. It is chiefly motivated by a need to provide an observational dataset with quantified uncertainties for validations of climate model simulations of the twentieth century on all time-scales, with emphasis on the statistics of daily weather. It uses an Ensemble Kalman Filter data assimilation method with background ‘first guess’ fields supplied by an ensemble of forecasts from a global numerical weather prediction model. This directly yields a global analysis every 6 hours as the most likely state of the atmosphere, and also an uncertainty estimate of that analysis. The 20CR dataset provides the first estimates of global tropospheric variability, and of the dataset's time-varying quality, from 1871 to the present at 6-hourly temporal and 2° spatial resolutions. Intercomparisons with independent radiosonde data indicate that the reanalyses are generally of high quality. The quality in the extratropical Northern Hemisphere throughout the century is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging. It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific–North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century. Copyright © 2011 Royal Meteorological Society and Crown Copyright.

3,043 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the collation and analysis of the gridded land-based dataset of indices of temperature and precipitation extremes: HadEX2, which was calculated based on station data using a consistent approach recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices.
Abstract: [1] In this study, we present the collation and analysis of the gridded land-based dataset of indices of temperature and precipitation extremes: HadEX2. Indices were calculated based on station data using a consistent approach recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices, resulting in the production of 17 temperature and 12 precipitation indices derived from daily maximum and minimum temperature and precipitation observations. High-quality in situ observations from over 7000 temperature and 11,000 precipitation meteorological stations across the globe were obtained to calculate the indices over the period of record available for each station. Monthly and annual indices were then interpolated onto a 3.75° × 2.5° longitude-latitude grid over the period 1901–2010. Linear trends in the gridded fields were computed and tested for statistical significance. Overall there was very good agreement with the previous HadEX dataset during the overlapping data period. Results showed widespread significant changes in temperature extremes consistent with warming, especially for those indices derived from daily minimum temperature over the whole 110 years of record but with stronger trends in more recent decades. Seasonal results showed significant warming in all seasons but more so in the colder months. Precipitation indices also showed widespread and significant trends, but the changes were much more spatially heterogeneous compared with temperature changes. However, results indicated more areas with significant increasing trends in extreme precipitation amounts, intensity, and frequency than areas with decreasing trends.

1,055 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the results of the analysis of daily temperature (maximum and minimum) and precipitation data from 14 south and west African countries over the period 1961-2000.
Abstract: Received 31 May 2005; revised 10 January 2006; accepted 23 March 2006; published 21 July 2006. [1] There has been a paucity of information on trends in daily climate and climate extremes, especially from developing countries. We report the results of the analysis of daily temperature (maximum and minimum) and precipitation data from 14 south and west African countries over the period 1961–2000. Data were subject to quality control and processing into indices of climate extremes for release to the global community. Temperature extremes show patterns consistent with warming over most of the regions analyzed, with a large proportion of stations showing statistically significant trends for all temperature indices. Over 1961 to 2000, the regionally averaged occurrence of extreme cold (fifth percentile) days and nights has decreased by � 3.7 and � 6.0 days/decade, respectively. Over the same period, the occurrence of extreme hot (95th percentile) days and nights has increased by 8.2 and 8.6 days/decade, respectively. The average duration of warm (cold) has increased (decreased) by 2.4 (0.5) days/decade and warm spells. Overall, it appears that the hot tails of the distributions of daily maximum temperature have changed more than the cold tails; for minimum temperatures, hot tails show greater changes in the NW of the region, while cold tails have changed more in the SE and east. The diurnal temperature range (DTR) does not exhibit a consistent trend across the region, with many neighboring stations showing opposite trends. However, the DTR shows consistent increases in a zone across Namibia, Botswana, Zambia, and Mozambique, coinciding with more rapid increases in maximum temperature than minimum temperature extremes. Most precipitation indices do not exhibit consistent or statistically significant trends across the region. Regionally averaged total precipitation has decreased but is not statistically significant. At the same time, there has been a statistically significant increase in regionally averaged daily rainfall intensity and dry spell duration. While the majority of stations also show increasing trends for these two indices, only a few of these are statistically significant. There are increasing trends in regionally averaged rainfall on extreme precipitation days and in maximum annual 5-day and 1-day rainfall, but only trends for the latter are statistically significant.

694 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the temporal and spatial trends of South African temperatures for the period 1960 to 2003, using a total of 26 climate stations, with each having sufficient data available and not having undergone major moves or changes in exposure that would influence the homogeneity of their data series.
Abstract: Time series of South African temperatures were investigated for temporal and spatial trends for the period 1960 to 2003. For this purpose a total of 26 climate stations were utilized, with each having sufficient data available and not having undergone major moves or changes in exposure that would influence the homogeneity of their data series. The vast majority, a total of 23 stations, showed positive trends in their annual mean maximum temperature series, 13 of them significant, with trends higher for central stations than those closer to the coast. Annual mean minimum temperatures showed 21 stations having positive trends, with 18 significant. Stations not showing significantly positive trends in annual mean minimum temperatures were mostly situated in the central interior. The annual average temperature data series of 24 of the stations showed positive trends, with 18 of them significant. Trends of mean seasonal temperature showed that temperature trends are not consistent throughout the year, with the average trend for autumn showing a maximum and spring a minimum. Monthly trends of average annual temperatures showed large differences in trend between stations, and for each station between months, but similar tendencies in trend between months were found to exist for stations close by and also for groups of stations on a regional basis. Trends in diurnal temperature range are almost equally divided between positive and negative, with the positive trends in the central interior mainly being caused by large positive trends in maximum temperature. It is also shown that, in general, days and nights with relatively high temperatures have increased, while days and nights with relatively low temperatures have decreased. The effects of urbanization on temperature trends are investigated, and the conclusion is that most stations regarded as urban stations are still useful for trend analysis; being situated on the outskirts of cities they are, therefore, not substantially influenced by the urban heat island. El Nino and La Nina events do not seem to play a significant role in the increasing temperatures observed. Copyright © 2004 Royal Meteorological Society

324 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: ERA-Interim as discussed by the authors is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which will extend back to the early part of the twentieth century.
Abstract: ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF. Copyright © 2011 Royal Meteorological Society

22,055 citations

Journal ArticleDOI
TL;DR: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA's Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA's Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses as mentioned in this paper.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...

4,572 citations

Journal ArticleDOI
TL;DR: An overview of the MERRA-2 system and various performance metrics is provided, including the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of M...

4,524 citations

Journal ArticleDOI
TL;DR: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed as discussed by the authors, and the results showed widespread significant changes in temperature extremes associated with warming.
Abstract: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with near-complete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.

3,722 citations