scispace - formally typeset
Search or ask a question
Author

Andrzej K. Bledzki

Bio: Andrzej K. Bledzki is an academic researcher from West Pomeranian University of Technology. The author has contributed to research in topics: Ultimate tensile strength & Flexural strength. The author has an hindex of 41, co-authored 175 publications receiving 11754 citations. Previous affiliations of Andrzej K. Bledzki include Riga Technical University & Szczecin University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.

3,074 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that modified cellulose fiber-polymer interaction mechanisms are complex and specific to every definite system, therefore, a surface modification of the fibers is necessary.
Abstract: SYNOPSIS Studies on structure and properties of natural vegetable fibers (NVF) show that composites made of NVF combine good mechanical properties with a low specific mass. The high level of moisture absorption by the fiber, its poor wettability, as well as the insufficient adhesion between untreated fibers and the polymer matrix lead to debonding with age. To build composites with high mechanical properties, therefore, a surface modification of the fibers is necessary. The existing physical and chemical NVF modification methods-e.g., plasma treatment or graft copolymerization-which are used for the development of NVF-polymer composite properties is discussed. It is shown that modified cellulose fiber-polymer interaction mechanisms are complex and specific to every definite system. By using an coupling agent, like silanes or stearin acid, the Young's modulus and the tensile strength increases, dependent on the resin, until 50%. Simultaneously, the moisture absorption of the composites decreases for about 60%. With other surface modifications, similar results are obtained. 0 1996 John Wiley & Sons, Inc

851 citations

Journal ArticleDOI
TL;DR: A review of natural fiber reinfocred composites focusing on natural fiber types and sources, processing methods, modification of fibers, matrices (petrochemical and renewable), and their mechanical performance is presented in this paper.
Abstract: This century has witnessed remarkable achievements in green technology in material science through the development of natural fiber reinforced composites. The development of high-performance engineering products made from natural resources is increasing worldwide day by day. There is increasing interest in materials demonstrating efficient use of renewable resources. Nowadays, more than ever, companies are faced with opportunities and choices in material innovations. Due to the challenges of petroleum-based products and the need to find renewable solutions, more and more companies are looking at natural fiber composite materials. The primary driving forces for new bio-composite materials are the cost of natural fibers (currently priced at one-third of the cost of glass fiber or less), weight reduction (these fibers are half the weight of glass fiber), recycling (natural fiber composites are easier to recycle) and the desire for green products. This Review provides an overview of natural fiber reinfocred composites focusing on natural fiber types and sources, processing methods, modification of fibers, matrices (petrochemical and renewable), and their mechanical performance. It also focuses on future research, recent developments and applications and concludes with key issues that need to be resolved. This article critically summarizes the essential findings of the mostly readily utilized reinforced natural fibers in polymeric composite materials and their performance from 2000 to 2013.

691 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the shrinkage state of jute fibres on the Young's modulus of composite impact damping and yarn toughness has been investigated for both untreated and treated jute/epoxy composites.

628 citations

Journal ArticleDOI
TL;DR: In this paper, the effectiveness of MAH-PP copolymers (graft copolymer of PP and maleic anhydride) as coupling agents in jute-polypropylene composites was investigated.
Abstract: This article concerns the effectiveness of MAH-PP copolymers (graft copolymer of PP and maleic anhydride) as coupling agents in jute-polypropylene composites. The fiber treatment time and the MAH-PP concentration influenced the mechanical properties of the composites. Flexural strength of the composites with MAH-PP treated fibers was higher than that of unmodified fibers, and increased with fiber loading. The cyclic-dynamic values at an increasing load indicated that the coupling agent reduces the progress of damage. Dynamic strength (dynamic failure stress at load increasing test) of the MAH-PP modified composites is therefore raised by about 40%. SEM investigations confirm that the increase in properties is caused by improved fiber-matrix adhesion. There was less inclination for fibers to pull out of the matrix.

420 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites is presented, and the influence of such treatments by taking into account fibre content on the creep, quasi-static, cyclic dynamic and impact behaviour of natural fibre reinforced plastics are discussed in detail.

4,160 citations

Journal ArticleDOI
TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.

3,074 citations

Journal ArticleDOI
TL;DR: In this article, different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed, including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents and permanganate.
Abstract: Studies on the use of natural fibers as replacement to man-made fiber in fiber-reinforced composites have increased and opened up further industrial possibilities. Natural fibers have the advantages of low density, low cost, and biodegradability. However, the main disadvantages of natural fibers in composites are the poor compatibility between fiber and matrix and the relative high moisture sorption. Therefore, chemical treatments are considered in modifying the fiber surface properties. In this paper, the different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed. Chemical treatments including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents, isocyanates, permanganate and others are discussed. The chemical treatment of fiber aimed at improving the adhesion between the fiber surface and the polymer matrix may not only modify the fiber surface but also increase fiber strength. Water absorption of composites is reduced and their mechanical properties are improved.

2,286 citations

Journal ArticleDOI
TL;DR: In this paper, the basic principles involved in designing hierarchical biological materials, such as cellular and composite architectures, adapative growth and as well as remodeling, are discussed, and examples that are found to utilize these strategies include wood, bone, tendon, and glass sponges.

2,274 citations

Journal ArticleDOI
TL;DR: A review of natural fiber reinforced composites is presented in this paper with special reference to the type of fibers, matrix polymers, treatment of fibers and fiber-matrix interface.
Abstract: Natural fiber reinforced composites is an emerging area in polymer science. These natural fibers are low cost fibers with low density and high specific properties. These are biodegradable and non-abrasive. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. However, in development of these composites, the incompatibility of the fibers and poor resistance to moisture often reduce the potential of natural fibers and these draw backs become critical issue. This review presents the reported work on natural fiber reinforced composites with special reference to the type of fibers, matrix polymers, treatment of fibers and fiber-matrix interface. © 1999 John Wiley & Sons, Inc. Adv in Polymer Techn 18: 351–363, 1999

2,210 citations