scispace - formally typeset
Search or ask a question
Author

Andrzej Kulak

Other affiliations: Jagiellonian University
Bio: Andrzej Kulak is an academic researcher from AGH University of Science and Technology. The author has contributed to research in topics: Schumann resonances & Extremely low frequency. The author has an hindex of 15, co-authored 49 publications receiving 655 citations. Previous affiliations of Andrzej Kulak include Jagiellonian University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors simulated several processes acting below, in and above thunderstorms and in electrified shower clouds, which drive upward currents which close through the global atmospheric electric circuit.

111 citations

Journal ArticleDOI
TL;DR: The Hylaty geophysical station as discussed by the authors is a high-sensitivity and low-noise facility for extremely low frequency (ELF, 0.03-300 Hz) electromagnetic field measurements, which enables a variety of geophysical and climatological research related to atmospheric, ionospheric, magnetospheric and space weather physics.
Abstract: We present the Hylaty geophysical station, a high-sensitivity and low-noise facility for extremely low frequency (ELF, 0.03–300 Hz) electromagnetic field measurements, which enables a variety of geophysical and climatological research related to atmospheric, ionospheric, magnetospheric, and space weather physics. The first systematic observations of ELF electromagnetic fields at the Jagiellonian University were undertaken in 1994. At the beginning the measurements were carried out sporadically, during expeditions to sparsely populated areas of the Bieszczady Mountains in the southeast of Poland. In 2004, an automatic Hylaty ELF station was built there, in a very low electromagnetic noise environment, which enabled continuous recording of the magnetic field components of the ELF electromagnetic field in the frequency range below 60 Hz. In 2013, after 8 years of successful operation, the station was upgraded by extending its frequency range up to 300 Hz. In this paper we show the station's technical setup, and how it has changed over the years. We discuss the design of ELF equipment, including antennas, receivers, the time control circuit, and power supply, as well as antenna and receiver calibration. We also discuss the methodology we developed for observations of the Schumann resonance and wideband observations of ELF field pulses. We provide examples of various kinds of signals recorded at the station.

61 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented results from dedicated magnetometer measurements at the Virgo and KAGRA sites, which are the first results for subtraction using data from gravitational-wave detector sites.
Abstract: Correlated magnetic noise from Schumann resonances threatens to contaminate the observation of a stochastic gravitational-wave background in interferometric detectors. In previous work, we reported on the first effort to eliminate global correlated noise from the Schumann resonances using Wiener filtering, demonstrating as much as a factor of two reduction in the coherence between magnetometers on different continents. In this work, we present results from dedicated magnetometer measurements at the Virgo and KAGRA sites, which are the first results for subtraction using data from gravitational-wave detector sites. We compare these measurements to a growing network of permanent magnetometer stations, including at the LIGO sites. We show the effect of mutual magnetometer attraction, arguing that magnetometers should be placed at least one meter from one another. In addition, for the first time, we show how dedicated measurements by magnetometers near to the interferometers can reduce coherence to a level consistent with uncorrelated noise, making a potential detection of a stochastic gravitational-wave background possible.

49 citations

Journal ArticleDOI
TL;DR: In this paper, three types of observations: the daily values of the solar radio flux at 7 frequencies, the daily international sunspot number and the daily Stanford mean solar magnetic field were processed in order to find all the periodicities hidden in the data.
Abstract: Three types of observations: the daily values of the solar radio flux at 7 frequencies, the daily international sunspot number and the daily Stanford mean solar magnetic field were processed in order to find all the periodicities hidden in the data. Using a new approach to the radio data, two time series were obtained for each frequency examined, one more sensitive to spot magnetic fields, the other to large magnetic structures not connected with sunspots. Power spectrum analysis of the data was carried out separately for the minimum (540 days from 1 March 1996 to 22 August 1997) and for the rising phase (708 days from 23 August 1997 to 31 July 1999) of the solar cycle 23. The Scargle periodograms obtained, normalized for the effect of autocorrelation, show the majority of known periods and reveal a clear difference between the periodicities found in the minimum and the rising phase. We determined the rotation rate of the `active longitudes' in the rising phase as equal to 444.4 $\pm$ 4 nHz ($26\fd0 \pm 0\fd3$). The results indicate that appropriate and careful analysis of daily radio data at several frequencies allows the investigation of solar periodicities generated in different layers of the solar atmosphere by various phenomena related to the periodic emergence of diverse magnetic structures.

41 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a field decomposition method that allows separating the resonance component from the transmission component, and demonstrated that the transmission field component depends on the attenuation rate of the Earth-ionosphere cavity and the observer-source distance.
Abstract: [1] Asymmetric resonance curves are observed in various resonance systems occurring in nature. The reason for such a shape of the resonance curves is an interaction of the standing waves field in the resonator with the field of traveling waves which transmit energy from sources to the resonator. This behavior can be observed in strongly damped electromagnetic resonators. The ELF wave propagation inside the Earth-ionosphere cavity is a good example of the simultaneous occurrence of resonance and transmission phenomena. In this paper we show that the transmission field component depends on the attenuation rate of the Earth-ionosphere cavity and the observer-source distance. Besides, the resonance curve asymmetry causes an evident diurnal variability of the resonance frequencies. The superposition of the two components at any point of the resonator makes the analysis of the Schumann resonance (SR) difficult. Here we suggest a field decomposition method that allows separating the resonance component from the transmission one. Owing to the decomposition, having a single measurement of the E or B field, it is possible, independently of the observer position, to study the physical properties of the resonator as well as to determine the localization and the intensity of sources. The field decomposition permits defining new resonator parameters such as reduced resonance frequencies and reduced quality factors, independent of the observer position inside the cavity. We believe that the application of the decomposition method in the analysis of the ELF observations yields a possibility of improving the accuracy of the determination of both the distances and intensities of the sources exciting the Earth-ionosphere resonator, as well as its own parameters.

40 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: A review of the physics of lightning can be found in this article, with the goal of providing interested researchers a useful resource for starting work in this fascinating field, and the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere.

359 citations

01 Dec 2012
TL;DR: The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere, and will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings.
Abstract: The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere. Advanced spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved cloud and moisture imagery with the 16-channel Advanced Baseline Imager (ABI). The GLM will map total lightning activity continuously day and night with near-uniform storm-scale spatial resolution of 8 km with a product refresh rate of less than 20 s over the Americas and adjacent oceanic regions in the western hemisphere. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low Earth orbit, and from ground-based lightning networks and intensive prelaunch field campaigns. The GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extend their combined climatology over the western hemisphere into the coming decades. Science and application development along with preoperational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and checkout of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

307 citations

Journal ArticleDOI
TL;DR: The article considers both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and it allows for anisotropy, non-Gaussianity, and non-standard polarization states.
Abstract: We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field.

306 citations

Journal ArticleDOI
TL;DR: In this paper, the instability of the Friedmann world model up to second order in perturbations is considered and a decomposition is made for scalar-, vector-, and tensor-type perturbation which couple with each other to second-order.
Abstract: We consider the instability of the Friedmann world model to second order in perturbations. We present the perturbed set of equations up to second order in the Friedmann background world model with a general spatial curvature and cosmological constant. We consider systems with completely general imperfect fluids, minimally coupled scalar fields, an electromagnetic field, and generalized gravity theories. We also present the case of null geodesic equations, and one based on the relativistic Boltzmann equation. In due time, a decomposition is made for scalar-, vector-, and tensor-type perturbations which couple with each other to second order. A gauge issue is resolved to each order. The basic equations are presented without imposing any gauge condition, and thus in a gauge-ready form so that we can take full advantage of having gauge freedom in analyzing the problems. As an application we show that to second order in perturbation the relativistic pressureless ideal fluid of the scalar type reproduces exactly the known Newtonian result. As another application we rederive the large-scale conserved quantities (of the pure scalar and tensor perturbations) to second order, first shown by Salopek and Bond, now from the exact equations. Several other applications are shown as well.

272 citations