scispace - formally typeset
Search or ask a question
Author

Andrzej Mackiewicz

Bio: Andrzej Mackiewicz is an academic researcher from Poznan University of Medical Sciences. The author has contributed to research in topics: Cancer & Melanoma. The author has an hindex of 44, co-authored 207 publications receiving 24956 citations. Previous affiliations of Andrzej Mackiewicz include Aix-Marseille University & Case Western Reserve University.


Papers
More filters
Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: The ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity.
Abstract: We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer.

9,355 citations

Journal ArticleDOI
Adam J. Bass1, Vesteinn Thorsson2, Ilya Shmulevich2, Sheila Reynolds2  +254 moreInstitutions (32)
11 Sep 2014-Nature
TL;DR: A comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project is described and a molecular classification dividing gastric cancer into four subtypes is proposed.
Abstract: Gastric cancer was the world’s third leading cause of cancer mortality in 2012, responsible for 723,000 deaths1. The vast majority of gastric cancers are adenocarcinomas, which can be further subdivided into intestinal and diffuse types according to the Lauren classification2. An alternative system, proposed by the World Health Organization, divides gastric cancer into papillary, tubular, mucinous (colloid) and poorly cohesive carcinomas3. These classification systems have little clinical utility, making the development of robust classifiers that can guide patient therapy an urgent priority. The majority of gastric cancers are associated with infectious agents, including the bacterium Helicobacter pylori4 and Epstein–Barr virus (EBV). The distribution of histological subtypes of gastric cancer and the frequencies of H. pylori and EBV associated gastric cancer vary across the globe5. A small minority of gastric cancer cases are associated with germline mutation in E-cadherin (CDH1)6 or mismatch repair genes7 (Lynch syndrome), whereas sporadic mismatch repair-deficient gastric cancers have epigenetic silencing of MLH1 in the context of a CpG island methylator phenotype (CIMP)8. Molecular profiling of gastric cancer has been performed using gene expression or DNA sequencing9–12, but has not led to a clear biologic classification scheme. The goals of this study by The Cancer Genome Atlas (TCGA) were to develop a robust molecular classification of gastric cancer and to identify dysregulated pathways and candidate drivers of distinct classes of gastric cancer.

4,583 citations

Journal ArticleDOI
29 Jan 2015-Nature
TL;DR: It is shown that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1.
Abstract: The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1 Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22 A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53 Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours Therapeutic candidate alterations were identified in most HNSCCs

2,997 citations

Journal ArticleDOI
Rehan Akbani, Kadir C. Akdemir, B. Arman Aksoy1, Monique Albert1  +348 moreInstitutions (1)
18 Jun 2015-Cell
TL;DR: This clinicopathological and multi-dimensional analysis suggests that the prognosis of melanoma patients with regional metastases is influenced by tumor stroma immunobiology, offering insights to further personalize therapeutic decision-making.

2,337 citations

Journal ArticleDOI
TL;DR: Dabrafenib plus trametinib, as compared with vemurafenib monotherapy, significantly improved overall survival in previously untreated patients with metastatic melanoma with BRAF V600E or V600K mutations, without increased overall toxicity.
Abstract: Background The BRAF inhibitors vemurafenib and dabrafenib have shown efficacy as monotherapies in patients with previously untreated metastatic melanoma with BRAF V600E or V600K mutations. Combining dabrafenib and the MEK inhibitor trametinib, as compared with dabrafenib alone, enhanced antitumor activity in this population of patients. Methods In this open-label, phase 3 trial, we randomly assigned 704 patients with metastatic melanoma with a BRAF V600 mutation to receive either a combination of dabrafenib (150 mg twice daily) and trametinib (2 mg once daily) or vemurafenib (960 mg twice daily) orally as first-line therapy. The primary end point was overall survival. Results At the preplanned interim overall survival analysis, which was performed after 77% of the total number of expected events occurred, the overall survival rate at 12 months was 72% (95% confidence interval [CI], 67 to 77) in the combination-therapy group and 65% (95% CI, 59 to 70) in the vemurafenib group (hazard ratio for death in the combination-therapy group, 0.69; 95% CI, 0.53 to 0.89; P = 0.005). The prespecified interim stopping boundary was crossed, and the study was stopped for efficacy in July 2014. Median progression-free survival was 11.4 months in the combinationtherapy group and 7.3 months in the vemurafenib group (hazard ratio, 0.56; 95% CI, 0.46 to 0.69; P<0.001). The objective response rate was 64% in the combinationtherapy group and 51% in the vemurafenib group (P<0.001). Rates of severe adverse events and study-drug discontinuations were similar in the two groups. Cutaneous squamous-cell carcinoma and keratoacanthoma occurred in 1% of patients in the combination-therapy group and 18% of those in the vemurafenib group. Conclusions Dabrafenib plus trametinib, as compared with vemurafenib monotherapy, significantly improved overall survival in previously untreated patients with metastatic melanoma with BRAF V600E or V600K mutations, without increased overall toxicity. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT01597908.)

2,144 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics, which makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries.
Abstract: The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.

10,947 citations

Journal ArticleDOI
TL;DR: This study showed that mismatch-repair status predicted clinical benefit of immune checkpoint blockade with pembrolizumab, and high somatic mutation loads were associated with prolonged progression-free survival.
Abstract: BackgroundSomatic mutations have the potential to encode “non-self” immunogenic antigens. We hypothesized that tumors with a large number of somatic mutations due to mismatch-repair defects may be susceptible to immune checkpoint blockade. MethodsWe conducted a phase 2 study to evaluate the clinical activity of pembrolizumab, an anti–programmed death 1 immune checkpoint inhibitor, in 41 patients with progressive metastatic carcinoma with or without mismatch-repair deficiency. Pembrolizumab was administered intravenously at a dose of 10 mg per kilogram of body weight every 14 days in patients with mismatch repair–deficient colorectal cancers, patients with mismatch repair–proficient colorectal cancers, and patients with mismatch repair–deficient cancers that were not colorectal. The coprimary end points were the immune-related objective response rate and the 20-week immune-related progression-free survival rate. ResultsThe immune-related objective response rate and immune-related progression-free survival ...

6,835 citations

Journal ArticleDOI
29 Mar 2013-Science
TL;DR: This work has revealed the genomic landscapes of common forms of human cancer, which consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of "hills" (Genes altered infrequently).
Abstract: Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.

6,441 citations

Journal ArticleDOI
TL;DR: Among previously untreated patients with metastatic melanoma, nivolumab alone or combined with ipilimumab resulted in significantly longer progression-free survival than ipILimumab alone, and in patients with PD-L1-negative tumors, the combination of PD-1 and CTLA-4 blockade was more effective than either agent alone.
Abstract: The median progression-free survival was 11.5 months (95% confidence interval [CI], 8.9 to 16.7) with nivolumab plus ipilimumab, as compared with 2.9 months (95% CI, 2.8 to 3.4) with ipilimumab (hazard ratio for death or disease progression, 0.42; 99.5% CI, 0.31 to 0.57; P<0.001), and 6.9 months (95% CI, 4.3 to 9.5) with nivolumab (hazard ratio for the comparison with ipilimumab, 0.57; 99.5% CI, 0.43 to 0.76; P<0.001). In patients with tumors positive for the PD-1 ligand (PD-L1), the median progression-free survival was 14.0 months in the nivolumab-plus-ipilimumab group and in the nivolumab group, but in patients with PD-L1–negative tumors, progression-free survival was longer with the combination therapy than with nivolumab alone (11.2 months [95% CI, 8.0 to not reached] vs. 5.3 months [95% CI, 2.8 to 7.1]). Treatment-related adverse events of grade 3 or 4 occurred in 16.3% of the patients in the nivolumab group, 55.0% of those in the nivolumab-plus-ipilimumab group, and 27.3% of those in the ipilimumab group. CONCLUSIONS Among previously untreated patients with metastatic melanoma, nivolumab alone or combined with ipilimumab resulted in significantly longer progression-free survival than ipilimumab alone. In patients with PD-L1–negative tumors, the combination of PD-1 and CTLA-4 blockade was more effective than either agent alone. (Funded by Bristol-Myers Squibb; CheckMate 067 ClinicalTrials.gov number, NCT01844505.)

6,318 citations

Journal ArticleDOI
TL;DR: A large number of changes, distant from the site or sites of inflammation and involving many organ systems, may accompany inflammation, and the mechanisms mediating them are becoming better understood.
Abstract: A large number of changes, distant from the site or sites of inflammation and involving many organ systems, may accompany inflammation. In 1930 interest was focused on these changes by the discovery of C-reactive protein (so named because it reacted with the pneumococcal C-polysaccharide) in the plasma of patients during the acute phase of pneumococcal pneumonia.1 Accordingly, these systemic changes have since been referred to as the acute-phase response,2 even though they accompany both acute and chronic inflammatory disorders. New acute-phase phenomena continue to be recognized, and the mechanisms mediating them are becoming better understood. This review summarizes much of . . .

6,157 citations