scispace - formally typeset
Search or ask a question
Author

Andrzej Pelc

Bio: Andrzej Pelc is an academic researcher from Université du Québec en Outaouais. The author has contributed to research in topics: Node (networking) & Deterministic algorithm. The author has an hindex of 56, co-authored 408 publications receiving 10456 citations. Previous affiliations of Andrzej Pelc include University of Liverpool & Pennsylvania State University.


Papers
More filters
Journal ArticleDOI
TL;DR: For points in three dimensions it is shown that the problem of deciding whether a complete range assignment of a given cost exists, is NP-hard and an O(n 2 ) time approximation algorithm is given which provides a completerange assignment with cost within a factor of two of the minimum.

468 citations

BookDOI
16 Sep 2003
TL;DR: Two mobile agents having distinct identifiers and located in nodes of an unknown anonymous connected graph, have to meet at some node of the graph and fast deterministic algorithms for this rendezvous problem are presented.
Abstract: Two mobile agents having distinct identifiers and located in nodes of an unknown anonymous connected graph, have to meet at some node of the graph. We present fast deterministic algorithms for this rendezvous problem.

225 citations

Journal ArticleDOI
TL;DR: The relations between searching games with errors and problems concerning communication through a noisy channel and error-correcting codes are shown, and a taxonomy of such games is given, depending on the type of questions allowed, on the degree of interactivity between the players, and on the imposed limitations on errors.

222 citations

Proceedings ArticleDOI
01 Jan 1998
TL;DR: In this paper, the authors give an exploration algorithm whose penalty is O(|V(G)|) for every graph, and also show that some natural exploration algorithms cannot achieve this efficiency.
Abstract: A robot has to construct a complete map of an unknown environment modeled as an undirected connected graph. The task is to explore all nodes and edges of the graph using the minimum number of edge traversals. The penalty of an exploration algorithm running on a graph G = (V(G), E(G)) is the worst-case number of traversals in excess of the lower bound |E(G)| that it must perform in order to explore the entire graph. We give an exploration algorithm whose penalty is O(|V(G)|) for every graph. We also show that some natural exploration algorithms cannot achieve this efficiency.

196 citations

Journal ArticleDOI
TL;DR: This work considers the problem of gathering identical, memoryless, mobile robots in one node of an anonymous unoriented ring, and provides gathering algorithms for initial configurations proved to be gatherable.

186 citations


Cited by
More filters
Proceedings ArticleDOI
01 Aug 1999
TL;DR: It is found that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches, and that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.

2,525 citations

Book ChapterDOI
01 Jan 1977
TL;DR: In the Hamadryas baboon, males are substantially larger than females, and a troop of baboons is subdivided into a number of ‘one-male groups’, consisting of one adult male and one or more females with their young.
Abstract: In the Hamadryas baboon, males are substantially larger than females. A troop of baboons is subdivided into a number of ‘one-male groups’, consisting of one adult male and one or more females with their young. The male prevents any of ‘his’ females from moving too far from him. Kummer (1971) performed the following experiment. Two males, A and B, previously unknown to each other, were placed in a large enclosure. Male A was free to move about the enclosure, but male B was shut in a small cage, from which he could observe A but not interfere. A female, unknown to both males, was then placed in the enclosure. Within 20 minutes male A had persuaded the female to accept his ownership. Male B was then released into the open enclosure. Instead of challenging male A , B avoided any contact, accepting A’s ownership.

2,364 citations

Book
12 Aug 2005
TL;DR: In this article, the authors state several problems related to topology control in wireless ad hoc and sensor networks, and survey state-of-the-art solutions which have been proposed to tackle them.
Abstract: Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of this technique is to control the topology of the graph representing the communication links between network nodes with the purpose of maintaining some global graph property (e.g., connectivity), while reducing energy consumption and/or interference that are strictly related to the nodes' transmitting range. In this article, we state several problems related to topology control in wireless ad hoc and sensor networks, and we survey state-of-the-art solutions which have been proposed to tackle them. We also outline several directions for further research which we hope will motivate researchers to undertake additional studies in this field.

1,367 citations

Journal ArticleDOI
TL;DR: A family of adaptive protocols that efficiently disseminate information among sensors in an energy-constrained wireless sensor network, called SPIN (Sensor Protocols for Information via Negotiation), that perform close to the theoretical optimum in both point-to-point and broadcast networks.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminate information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of four specific SPIN protocols: SPIN-PP and SPIN-EC, which are optimized for a point-to-point network, and SPIN-BC and SPIN-RL, which are optimized for a broadcast network. Comparing the SPIN protocols to other possible approaches, we find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches in a point-to-point network and 80% more data for a given amount of energy in a broadcast network. We also find that, in terms of dissemination rate and energy usage, the SPIN protocols perform close to the theoretical optimum in both point-to-point and broadcast networks.

1,185 citations

BookDOI
26 Jul 2009
TL;DR: This self-contained introduction to the distributed control of robotic networks offers a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation.
Abstract: This self-contained introduction to the distributed control of robotic networks offers a distinctive blend of computer science and control theory. The book presents a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation. The unifying theme is a formal model for robotic networks that explicitly incorporates their communication, sensing, control, and processing capabilities--a model that in turn leads to a common formal language to describe and analyze coordination algorithms.Written for first- and second-year graduate students in control and robotics, the book will also be useful to researchers in control theory, robotics, distributed algorithms, and automata theory. The book provides explanations of the basic concepts and main results, as well as numerous examples and exercises.Self-contained exposition of graph-theoretic concepts, distributed algorithms, and complexity measures for processor networks with fixed interconnection topology and for robotic networks with position-dependent interconnection topology Detailed treatment of averaging and consensus algorithms interpreted as linear iterations on synchronous networks Introduction of geometric notions such as partitions, proximity graphs, and multicenter functions Detailed treatment of motion coordination algorithms for deployment, rendezvous, connectivity maintenance, and boundary estimation

1,166 citations