scispace - formally typeset
Search or ask a question

Showing papers by "Andy Hector published in 2011"


Journal ArticleDOI
08 Sep 2011-Nature
TL;DR: It is shown that 84% of the 147 grassland plant species studied in 17 biodiversity experiments promoted ecosystem functioning at least once, and many species are needed to maintain multiple functions at multiple times and places in a changing world.
Abstract: Biodiversity is rapidly declining worldwide, and there is consensus that this can decrease ecosystem functioning and services. It remains unclear, though, whether few or many of the species in an ecosystem are needed to sustain the provisioning of ecosystem services. It has been hypothesized that most species would promote ecosystem services if many times, places, functions and environmental changes were considered; however, no previous study has considered all of these factors together. Here we show that 84% of the 147 grassland plant species studied in 17 biodiversity experiments promoted ecosystem functioning at least once. Different species promoted ecosystem functioning during different years, at different places, for different functions and under different environmental change scenarios. Furthermore, the species needed to provide one function during multiple years were not the same as those needed to provide multiple functions within one year. Our results indicate that even more species will be needed to maintain ecosystem functioning and services than previously suggested by studies that have either (1) considered only the number of species needed to promote one function under one set of environmental conditions, or (2) separately considered the importance of biodiversity for providing ecosystem functioning across multiple years, places, functions or environmental change scenarios. Therefore, although species may appear functionally redundant when one function is considered under one set of environmental conditions, many species are needed to maintain multiple functions at multiple times and places in a changing world.

1,268 citations


Journal ArticleDOI
23 Sep 2011-Science
TL;DR: This article conducted a standardized sampling in 48 herbaceous-dominated plant communities on five continents and found no clear relationship between productivity and fine-scale (meters−2) richness within sites, within regions, or across the globe.
Abstract: For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters−2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.

509 citations


Journal ArticleDOI
TL;DR: The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
Abstract: Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

246 citations


Journal ArticleDOI
TL;DR: Subtropical broad-leaved forests in southeastern China support a high diversity of woody plants, and a number of environmen...
Abstract: Subtropical broad-leaved forests in southeastern China support a high diversity of woody plants. Using a comparative study design with 30 × 30 m plots (n = 27) from five successional stages ( 1 m in height in each plot and counted all woody recruits (bank of all seedlings ≤1 m in height) in each central 10 × 10 m quadrant of each plot. In addition, we measured a number of environmen...

205 citations


Journal ArticleDOI
TL;DR: The results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation, as well as estimating residual impacts 22 years after selective logging.
Abstract: Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results.

108 citations


Journal ArticleDOI
02 Mar 2011-PLOS ONE
TL;DR: It is shown that while the use of test statistics and the R2 gives contradictory assessments, the variance components analysis reveals that species richness and composition are of roughly similar importance for primary productivity in grassland biodiversity experiments.
Abstract: The idea that species diversity can influence ecosystem functioning has been controversial and its importance relative to compositional effects hotly debated. Unfortunately, assessing the relative importance of different explanatory variables in complex linear models is not simple. In this paper we assess the relative importance of species richness and species composition in a multilevel model analysis of net aboveground biomass production in grassland biodiversity experiments by estimating variance components for all explanatory variables. We compare the variance components using a recently introduced graphical Bayesian ANOVA. We show that while the use of test statistics and the R2 gives contradictory assessments, the variance components analysis reveals that species richness and composition are of roughly similar importance for primary productivity in grassland biodiversity experiments.

78 citations


Journal ArticleDOI
TL;DR: This work investigated the effects of conspecific density and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia, and found that higher seed production in un Logged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to un logged forest.
Abstract: Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen–Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen–Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m2) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen–Connell mechanism at this site, it may influence the recruitment of particular species.

59 citations


Journal ArticleDOI
TL;DR: In this paper, the authors propose a facilitatory policy framework for forest restoration in Borneo to stimulate action in advance of the next mass fruiting of forest trees in the region.
Abstract: The recent mass fruiting of forest trees in Borneo is an urgent wakeup call: existing policy instruments, financial mechanisms, and forestry infrastructure are inadequate to take full advantage of these infrequent opportunities for forest restoration and conservation. Tropical forest restoration can provide substantial benefits for biodiversity conservation, climate change mitigation, and poverty alleviation. Yet the unpredictability of the synchronized flowering and consequent mass fruiting of many forest trees in Borneo presents a distinctive set of challenges for forest restoration. Significant financing and a considerable coordinated effort are required to prepare for future mass fruiting events if we are to capitalize on opportunities for ecological restoration. The continued high rate of forest clearance in this region and the rarity of mass fruiting events suggest that there may be few remaining opportunities to prevent widespread species extinctions. In this article we propose a facilitatory policy framework for forest restoration in Borneo to stimulate action in advance of the next mass fruiting of forest trees.

32 citations


01 Jan 2011
TL;DR: The authors conducted standardized sampling in 48 herbaceous-dominated plant communities on five continents and found no clear relationship between productivity and fine-scale (meters−2) richness within sites, within regions, or across the globe.
Abstract: Standardized sampling from many sites worldwide was used to address an important ecological problem. For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters−2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.

28 citations


Journal ArticleDOI
Andy Hector1
07 Apr 2011-Nature
TL;DR: A study of algal communities in artificial streams suggests that habitats with more species take greater advantage of the niche opportunities in an environment than do less-species-rich habitats, allowing the more diverse systems to capture a greater fraction of biologically active resources such as nitrogen.
Abstract: A consequence of Darwin's 'principle of divergence' is that loss of species can harm the functioning of ecosystems. A study of algal communities in artificial streams suggests that he was right. See Letter p.86 Studies in recent years have suggested that the conservation of biodiversity improves the ability of an ecosystem to retain nutrients and remain productive. These papers have proved controversial, in part because of a lack of direct evidence for a mechanism to explain the phenomenon. Now, in experiments involving manipulation of the number of algal species in model stream systems, Bradley Cardinale provides one such mechanism. Uptake of nitrogen nutrients increased linearly with species richness in response to changes in flow habitats and disturbance regimes. But when niche structure was experimentally removed, the relationship disappeared. This suggests that habitats with more species take greater advantage of the niche opportunities in an environment than do less-species-rich habitats, allowing the more diverse systems to capture a greater fraction of biologically active resources such as nitrogen.

24 citations


Journal ArticleDOI
TL;DR: It is demonstrated that loss of vegetation diversity reduces the average biomass production across a range of environmental conditions and emphasizes the importance of maintaining species-rich biotic assemblages, especially in the face of global change.
Abstract: Summary 1. Understanding the influence of biodiversity on ecosystem functionality is crucial in modern ecosystem management, especially with regard to the resistance and resilience of ecosystems to future environmental changes. In this study, we assessed the effects of three different environmental regimes on the relationship between diversity and biomass production among marsh plants in comparison with a control treatment to elucidate the underlying classes of proximate mechanisms. 2. We subjected assemblages of up to 23 marsh plant species to four different treatments (control, drought, salt, shade) for 4 months. We examined the treatment effect on the relationship between species diversity and biomass production and explored the underlying mechanism. 3. Biomass production in the manipulated treatments showed a stronger positive effect of biodiversity than the control because of greater declines of biomass production in low diversity mixtures. This effect was owing to an increasingly positive complementarity effect, i.e. a benefit of most species, with increasing diversity, particularly in shade treatment. The selection effect, i.e. a benefit for few species at the expense of the others, was increasingly negative with increasing diversity and dominance by species with lower than average monoculture biomass. The variability of biomass production decreased with increasing species richness in all treatments. 4. Synthesis and applications. We show that the productivity of diverse marsh plant communities is more consistent across a range of environmental conditions than that of depauperate communities and that this unexpectedly resulted from complementarity rather than selection effects. Our results demonstrate that loss of vegetation diversity reduces the average biomass production across a range of environmental conditions and emphasizes the importance of maintaining species-rich biotic assemblages, especially in the face of global change.

Journal ArticleDOI
TL;DR: The results suggest that antagonistic (non-beneficial to the plant) effects due to ectomycorrhizal colonization under a light constrained environment may not affect seedling growth of Vatica albiramis.
Abstract: In a shadehouse experiment we tested the effects of light, nutrients and ectomycorrhizal fungi (EMF) on the growth of Vatica albiramis van Slooten (Dipterocarpaceae) seedlings. We hypothesised that it is more advantageous for plants to form connections with EMF and to trade carbon for nutrients with EMF under high light than low light. The relationship between seedling growth and the proportion of ectomycorrhizal root tips was expected as positive in high light and as negative in low light. Light conditions simulated the forest understory (low; 3% full sunlight), a small gap (medium; 11%) and a large gap (high; 33%) and a fully factorial combination of nutrients (F�/+) and ectomycorrhizal colonization (EMF�/+) treatments were applied within light con- ditions. The application of EMF and nutrients did significantly alter seedling growth across the range of forest floor light conditions, however the key hypoth- esis was rejected as seedling growth under low light was not affected by increased EMF colonization of root tips (light:EMF colonization χ 2 =2.97, p=0.23). In addition, the lack of difference in morphotype abundance across light conditions indicated that light changes may not favour the association to specific EMF in seedlings of this particular dipterocarp species. Our results suggest that antagonistic (non- beneficial to the plant) effects due to ectomycorrhizal colonization under a light constrained environment may not affect seedling growth of Vatica albiramis.

Journal ArticleDOI
TL;DR: Katholieke Universitiet van Amsterdam, Oude Markt 13, 3000 Leuven Belgium Universitet van Amsterdam as discussed by the authors, Spui 21, 1012 WX Amsterdam Netherlands Universiteit Leiden, Witte Singel 27, 2311 BG Leiden Netherlands, Netherlands University of Oxford, University Offices, Wellington Square, Oxford OX1 2JD University of Cambridge,, The Old Schools, Trinity Lane, Cambridge CB2 1TN Albert-Ludwigs-Universitat Freiburg, Fahnenbergplatz 1

Journal ArticleDOI
TL;DR: This special issue has as its theme the future of tropical rainforests in a changing landscape and climate the response and resilience of rainforest systems to climatic and land-use change.
Abstract: With a focus on the Danum Valley area of Sabah, Malaysian Borneo, this special issue has as its theme the future of tropical rainforests in a changing landscape and climate. The global environmental context to the issue is briefly given before the contents and rationale of the issue are summarized. Most of the papers are based on research carried out as part of the Royal Society South East Asia Rainforest Research Programme. The issue is divided into five sections: (i) the historical land-use and land management context; (ii) implications of land-use change for atmospheric chemistry and climate change; (iii) impacts of logging, forest fragmentation (particularly within an oil palm plantation landscape) and forest restoration on ecosystems and their functioning; (iv) the response and resilience of rainforest systems to climatic and land-use change; and (v) the scientific messages and policy implications arising from the research findings presented in the issue.

Journal ArticleDOI
TL;DR: Results from the atmospheric science and hydrology papers demonstrate the very high ecosystem service values of rainforest in maintaining high biodiversity, good local air quality, reducing greenhouse emissions, and reducing landslide, flooding and sedimentation consequences of climate change—and hence provide science to underpin the protection of remaining forest, even if degraded and fragmented.
Abstract: The context and challenges relating to the remaining tropical rainforest are briefly reviewed and the roles which science can play in addressing questions are outlined. Key messages which articles in the special issue, mainly based on projects of the Royal Society South East Asia Rainforest Research Programme (SEARRP), have raised of relevance to policies on land use, land management and REDD+ are then considered. Results from the atmospheric science and hydrology papers, and some of the ecological ones, demonstrate the very high ecosystem service values of rainforest (compared with oil palm) in maintaining high biodiversity, good local air quality, reducing greenhouse emissions, and reducing landslide, flooding and sedimentation consequences of climate change—and hence provide science to underpin the protection of remaining forest, even if degraded and fragmented. Another group of articles test ways of restoring forest quality (in terms of biodiversity and carbon value) or maintaining as high biodiversity and ecological functioning levels as possible via intelligent design of forest zones and fragments within oil palm landscapes. Finally, factors that have helped to enhance the policy relevance of SEARRP projects and dissemination of their results to decision-makers are outlined.

Journal Article
TL;DR: No clear relationship between productivity and fine-scale (meters−2) richness within sites, within regions, or across the globe is found, and ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity
Abstract: For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters−2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.

01 Jan 2011
TL;DR: Subtropical broad-leaved forests in southeastern China support a high diversity of woody plants and there is no evidence that rare species were responsible for the increasing adult species richness, as richness of rare species among both adults and recruits was independent of the successional stage.
Abstract: Subtropical broad-leaved forests in southeastern China support a high diversity of woody plants. Using a comparative study design with 30 X 30 m plots (n = 27) from five successional stages ( 80 yr), we investigated how the gradient in species composition reflects underlying processes of community assembly. In particular, we tested whether species richness of adult trees and shrubs decreased or increased and assessed to which degree this pattern was caused by negative density dependence or continuous immigration over time. Furthermore, we tested whether rare species were increasingly enriched and the species composition of adult trees and shrubs became more similar to species composition of seedlings during the course of succession. We counted the individuals of all adult species and shrubs > 1 m in height in each plot and counted all woody recruits (bank of all seedlings <1 m in height) in each central 10 X 10 m quadrant of each plot. In addition, we measured a number of environmental variables (elevation, slope, aspect, soil moisture, pH, C, N, and C/N ratio) and biotic structural variables (height and cover of layers). Adult species richness varied from 25 to 69 species per plot, and in total 148 woody species from 46 families were recorded. There was a clear successional gradient in species composition as revealed by nonmetric multidimensional scaling (NMDS), but only a poor differentiation of different successional stages with respect to particular species. Adult richness per 100 individuals (rarefaction method) increased with successional stage. None of the measured abiotic variables were significantly correlated with adult species richness. We found no evidence that rare species were responsible for the increasing adult species richness, as richness of rare species among both adults and recruits was independent of the successional stage. Furthermore, the similarity between established adults and recruits did not increase with successional stage. There was a constant number of recruit species and also of exclusive recruit species, i.e., those that had not been present as adult individuals, across all successional stages, suggesting a continuous random immigration over time.