scispace - formally typeset
Search or ask a question
Author

Andy Hector

Bio: Andy Hector is an academic researcher from University of Oxford. The author has contributed to research in topics: Biodiversity & Species richness. The author has an hindex of 74, co-authored 183 publications receiving 36456 citations. Previous affiliations of Andy Hector include University of Zurich & Natural Environment Research Council.


Papers
More filters
Book ChapterDOI
30 Jul 2009
TL;DR: In this paper, the importance of biodiversity to ecosystem functioning and human wellbeing is discussed, and a different, rather unconventional approach is needed for understanding ecology and environmental biology, one that asks the question that is rarely asked.
Abstract: Conventional approaches to ecology often lack the necessary integration to make a compelling case for the critical importance of biodiversity to ecosystem functioning and human wellbeing. This linear approach does not prepare one for understanding and applying ecology in the context of the modern world. A different, rather unconventional approach is needed for understanding ecology and environmental biology, one that asks the question that is rarely asked — What is the significance of biodiversity to human wellbeing? That is what this book asks.

40 citations

Journal ArticleDOI
TL;DR: The results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival, and average survival rates were extreme in monocultures than mixtures.
Abstract: One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the ‘insurance hypothesis’ predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning.

38 citations

Journal ArticleDOI
TL;DR: The results suggest that tree species richness in the litter layer can indirectly promote decomposition and nutrient cycling via positive non-additive mixture effects.
Abstract: Tree diversity is considered to influence decomposition either by changing environmental conditions or by non-additive litter mixture effects. Thus, we examined the influence of tree species richness, forest age and environmental factors on single-species decomposition, and tested the hypothesis that high litter species diversity induces predominantly positive non-additive mixture effects on decomposition processes. Decomposition trials using litter bags were performed in subtropical forests in China. Plot-specific decompositions rates of the abundant species Schima superba were related to environmental factors across 27 forest stands differing in age and tree species richness. Effects of litter species diversity on decomposition and N loss was assessed based on 27 plot-specific litter mixtures comprising 7 to 17 species. Decomposition rate of Schima superba leaf litter was mainly affected by stand characteristics and microclimate but not tree diversity. Two thirds of plot-specific litter mixtures showed a positive non-additive mixture effect whose strength was marginally positively influenced by litter species richness. Tree diversity at stand level does not directly influence decomposition of a common litter substrate. However, our results suggest that tree species richness in the litter layer can indirectly promote decomposition and nutrient cycling via positive non-additive mixture effects.

38 citations

Journal ArticleDOI
TL;DR: This work presents a two‐stage approach to modeling abundance, combining two established techniques, and shows that this method performs well in predicting the abundance of 20 of 25 tested British tree species, a group that is generally considered challenging for modeling distributions due to the strong influence of human activities.
Abstract: High-quality abundance data are expensive and time-consuming to collect and often highly limited in availability. Nonetheless, accurate, high-resolution abundance distributions are essential for many ecological applications ranging from species conservation to epidemiology. Producing models that can predict abundance well, with good resolution over large areas, has therefore been an important aim in ecology, but poses considerable challenges. We present a two-stage approach to modeling abundance, combining two established techniques. First, we produce ensemble species distribution models (SDMs) of trees in Great Britain at a fine resolution, using much more common presence–absence data and key environmental variables. We then use random forest regression to predict abundance by linking the results of the SDMs to a much smaller amount of abundance data. We show that this method performs well in predicting the abundance of 20 of 25 tested British tree species, a group that is generally considered challenging for modeling distributions due to the strong influence of human activities. Maps of predicted tree abundance for the whole of Great Britain are provided at 1 km2 resolution. Abundance maps have a far wider variety of applications than presence-only maps, and these maps should allow improvements to aspects of woodland management and conservation including analysis of habitats and ecosystem functioning, epidemiology, and disease management, providing a useful contribution to the protection of British trees. We also provide complete R scripts to facilitate application of the approach to other scenarios.

36 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

8,837 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations