scispace - formally typeset
Search or ask a question
Author

Angel Dieguez

Bio: Angel Dieguez is an academic researcher from University of Barcelona. The author has contributed to research in topics: CMOS & Avalanche photodiode. The author has an hindex of 25, co-authored 148 publications receiving 5398 citations.


Papers
More filters
Journal ArticleDOI
A. A. Alves, L. M. Andrade Filho1, A. F. Barbosa, Ignacio Bediaga  +886 moreInstitutions (64)
TL;DR: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva).
Abstract: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

2,286 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a complete Raman spectrum analysis of SnO2 nanoparticles, which comprises modification of the normal vibration modes active in Raman when the spectra are obtained from nanocrystals of Sn O 2 nanoparticles in the region around 475 −775 cm 21, and the appearance of the acoustic modes in the low-frequency region of the spectrum.
Abstract: 14 and space group P4 2 /mnm. The unit cell consists of two metal atoms and four oxygen atoms. Each metal atom is situated amidst six oxygen atoms which approximately form the corners of a regular octahedron. Oxygen atoms are surrounded by three tin atoms which approximate the corners of an equilateral triangle. The lattice parameters are a5b 54.737 A, and c53.186 A. The ionic radii for O 22 and Sn 41 are 1.40 and 0.71 A, respectively. 1 The 6 unit cell atoms give a total of 18 branches for the vibrational modes in the first Brillouin zone. The mechanical representation of the normal vibration modes at the center of the Brillouin zone is given by 2,3 G5G 1 ~ A1g!1G 2 ~ A2g!1G 3 ~ B1g!1G 4 ~ B2g! 1G 5 ~ Eg!12G 1 ~ A2u!12G 4 ~ B1u!14G 5 ~ Eu!, ~1! using the Koster notation with the commonly used symmetry designations listed in parenthesis. The latter will be used throughout this article. Of these 18 modes, 2 are active in infrared ~the single A2u and the triply degenerate Eu), 4 are Raman active ~three nondegenerated modes, A1g , B1g , B2g , and a doubly degenerate Eg), and two are silent ( A2g , and B1u). One A2u and two Eu modes are acoustic. In the Raman active modes oxygen atoms vibrate while Sn atoms are at rest ~see Fig. 1 in Ref. 4!. The nondegenerate mode, A1g , B1g , and B2g , vibrate in the plane perpendicular to the c axis while the doubly degenerated E g mode vibrates in the direction of the c axis. The B 1g mode consists of rotation of the oxygen atoms around the c axis, with all six oxygen atoms of the octahedra participating in the vibration. In the A2g infrared active mode, Sn and oxygen atoms vibrate in the c axis direction, and in the Eu mode both Sn and O atoms vibrate in the plane perpendicular to the c axis. The silent modes correspond to vibrations of the Sn and O atoms in the direction of the c axis (B1u) or in the plane perpendicular to this direction ( A2g). According to the literature, the corresponding calculated or observed frequencies of the optical modes are presented in Table I. When the size of the SnO2 crystal is reduced, the infrared spectrum is modified because the interaction between electromagnetic radiation and the particles depends on the crystal’s size, shape, and state of aggregation. 8‐1 0 Experiments using Raman spectroscopy have also reported spectrum modification, at least partially. Low frequency bands have been observed previously in SnO2, 11 and several authors have reported the existence of bands not observed in single-crystal or polycrystalline SnO 2 which have been found to be closely related to grain size. 12‐15 However, some of these reports do not adequately explain the origin of the abnormal spectrum. The aim of this article is to present a complete Raman spectrum of SnO2 nanoparticles. The analysis comprises ~i! modification of the normal vibration modes active in Raman when the spectra are obtained from nanocrystals of SnO2 ~‘‘classical modes’’ !, ~ii! the disorder activated surface modes in the region around 475‐775 cm 21 , and ~iii! the appearance of the acoustic modes in the low-frequency region of the spectra.

669 citations

Journal Article
TL;DR: In this article, an upgrade of the Belle detector at the KEKB electron-positron collider has been proposed, with an ultimate goal of 8E35 /cm^2 /s luminosity.
Abstract: The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.

419 citations

Journal ArticleDOI
TL;DR: In this article, the possibility of grain size control in indium oxide-sensing layers has been established by using of two preparation methods (electron beam evaporation (EB) and sol-gel technique (SG).
Abstract: In2O3 thin films prepared by sol–gel method make it possible to detect low levels (several hundreds ppb) of nitrogen dioxide in air. The possibility of grain size control in indium oxide-sensing layers has been established by using of two preparation methods—electron beam evaporation (EB) and sol–gel technique (SG). SG-prepared samples show smaller particles sizes (down to 5 nm), higher state of agglomeration, higher sensor resistance in air and higher response to NO2 in comparison to EB samples. Sol–gel technique leads to the preparation of polycrystalline indium oxide with particle sizes of about 5–6 nm after calcination at 400°C and 20 nm after calcination at 700°C. The initial state of particle agglomeration in initial indium hydroxide sol (IHS), stabilized with nitric acid, influences the structure and surface morphology of the resulting indium oxide. While the In2O3 layer prepared by using low agglomerated IHS is smooth and porous, In2O3 layers prepared from highly agglomerated IHS consist of two regions—thin layer and crystallite agglomerates in cubic and rectangular parallelepiped form. The last shows the best results in terms of NO2 sensitivity. Sensor resistance and NO2 sensitivity increase with the decrease of the grain sizes in In2O3.

223 citations

ReportDOI
01 Feb 2010
TL;DR: The International Large Detector (ILD) is a concept for a detector at the International Linear Collider, ILC as discussed by the authors, which will collide electrons and positrons at energies of initially 500 GeV, upgradeable to 1 TeV.
Abstract: The International Large Detector (ILD) is a concept for a detector at the International Linear Collider, ILC. The ILC will collide electrons and positrons at energies of initially 500 GeV, upgradeable to 1 TeV. The ILC has an ambitious physics program, which will extend and complement that of the Large Hadron Collider (LHC). A hallmark of physics at the ILC is precision. The clean initial state and the comparatively benign environment of a lepton collider are ideally suited to high precision measurements. To take full advantage of the physics potential of ILC places great demands on the detector performance. The design of ILD is driven by these requirements. Excellent calorimetry and tracking are combined to obtain the best possible overall event reconstruction, including the capability to reconstruct individual particles within jets for particle ow calorimetry. This requires excellent spatial resolution for all detector systems. A highly granular calorimeter system is combined with a central tracker which stresses redundancy and efficiency. In addition, efficient reconstruction of secondary vertices and excellent momentum resolution for charged particles are essential for an ILC detector. The interaction region of the ILC is designed to host two detectors, which can be moved into the beam position with a push-pull scheme. The mechanical design of ILD and the overall integration of subdetectors takes these operational conditions into account.

202 citations


Cited by
More filters
Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal ArticleDOI
A. A. Alves, L. M. Andrade Filho1, A. F. Barbosa, Ignacio Bediaga  +886 moreInstitutions (64)
TL;DR: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva).
Abstract: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

2,286 citations

Journal ArticleDOI
TL;DR: A review of surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface sciences studies with the broader field of materials science of tin oxide as discussed by the authors.

2,232 citations

Journal ArticleDOI
TL;DR: In this article, high performance gas sensors prepared using p-type oxide semiconductors such as NiO, CuO, Cr2O3, Co3O4, and Mn3O3 were reviewed.
Abstract: High-performance gas sensors prepared using p-type oxide semiconductors such as NiO, CuO, Cr2O3, Co3O4, and Mn3O4 were reviewed. The ionized adsorption of oxygen on p-type oxide semiconductors leads to the formation of hole-accumulation layers (HALs), and conduction occurs mainly along the near-surface HAL. Thus, the chemoresistive variations of undoped p-type oxide semiconductors are lower than those induced at the electron-depletion layers of n-type oxide semiconductors. However, highly sensitive and selective p-type oxide-semiconductor-based gas sensors can be designed either by controlling the carrier concentration through aliovalent doping or by promoting the sensing reaction of a specific gas through doping/loading the sensor material with oxide or noble metal catalysts. The junction between p- and n-type oxide semiconductors fabricated with different contact configurations can provide new strategies for designing gas sensors. p-Type oxide semiconductors with distinctive surface reactivity and oxygen adsorption are also advantageous for enhancing gas selectivity, decreasing the humidity dependence of sensor signals to negligible levels, and improving recovery speed. Accordingly, p-type oxide semiconductors are excellent materials not only for fabricating highly sensitive and selective gas sensors but also valuable additives that provide new functionality in gas sensors, which will enable the development of high-performance gas sensors.

1,642 citations

Journal ArticleDOI
01 Jan 1977-Nature
TL;DR: Bergh and P.J.Dean as discussed by the authors proposed a light-emitting diode (LEDD) for light-aware Diodes, which was shown to have promising performance.
Abstract: Light-Emitting Diodes. (Monographs in Electrical and Electronic Engineering.) By A. A. Bergh and P. J. Dean. Pp. viii+591. (Clarendon: Oxford; Oxford University: London, 1976.) £22.

1,560 citations