scispace - formally typeset
Search or ask a question
Author

Angel R. Lopez-Sanchez

Bio: Angel R. Lopez-Sanchez is an academic researcher from Macquarie University. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 68, co-authored 239 publications receiving 15039 citations. Previous affiliations of Angel R. Lopez-Sanchez include Australian Astronomical Observatory & IAC.


Papers
More filters
Journal ArticleDOI
Sebastián F. Sánchez1, Robert C. Kennicutt2, A. Gil de Paz3, G. van de Ven4, José M. Vílchez1, Lutz Wisotzki5, C. J. Walcher5, D. Mast1, J. A. L. Aguerri1, J. A. L. Aguerri6, Sergio Albiol-Pérez7, Almudena Alonso-Herrero1, João Alves8, J. Bakos1, J. Bakos6, T. Bartakova9, Joss Bland-Hawthorn10, Alessandro Boselli11, D. J. Bomans12, África Castillo-Morales3, C. Cortijo-Ferrero1, A. de Lorenzo-Cáceres1, A. de Lorenzo-Cáceres6, A. del Olmo1, Ralf-Jürgen Dettmar12, Angeles I. Díaz13, Simon Ellis10, Simon Ellis14, Jesús Falcón-Barroso1, Jesús Falcón-Barroso6, Hector Flores15, Anna Gallazzi16, Begoña García-Lorenzo6, Begoña García-Lorenzo1, R. M. González Delgado1, Nicolas Gruel, Tim Haines17, C. Hao18, Bernd Husemann5, J. Iglesias-Páramo1, Knud Jahnke4, Benjamin D. Johnson19, Bruno Jungwiert20, Bruno Jungwiert21, Veselina Kalinova4, C. Kehrig5, D. Kupko5, Angel R. Lopez-Sanchez14, Angel R. Lopez-Sanchez22, Mariya Lyubenova4, R. A. Marino1, R. A. Marino3, E. Mármol-Queraltó1, E. Mármol-Queraltó3, I. Márquez1, J. Masegosa1, Sharon E. Meidt4, Jairo Méndez-Abreu1, Jairo Méndez-Abreu6, Ana Monreal-Ibero1, C. Montijo1, A. Mourao23, G. Palacios-Navarro7, Polychronis Papaderos24, Anna Pasquali25, Reynier Peletier, Enrique Pérez1, I. Pérez26, Andreas Quirrenbach, M. Relaño26, F. F. Rosales-Ortega13, F. F. Rosales-Ortega1, Martin Roth5, T. Ruiz-Lara26, Patricia Sanchez-Blazquez13, C. Sengupta1, R. Singh4, Vallery Stanishev23, Scott Trager27, Alexandre Vazdekis1, Alexandre Vazdekis6, Kerttu Viironen1, Vivienne Wild28, Stefano Zibetti16, Bodo L. Ziegler8 
TL;DR: The Calar Alto Legacy Integral Field Area (CALIFA) survey as discussed by the authors was designed to provide a first step in this direction by obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe.
Abstract: The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of similar to 1.3 square', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 angstrom, using two overlapping setups (V500 and V1200), with different resolutions: R similar to 850 and R similar to 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis: (i) the final datacubes reach a 3 sigma limiting surface brightness depth of similar to 23.0 mag/arcsec(2) for the V500 grating data (similar to 22.8 mag/arcsec(2) for V1200); (ii) about similar to 70% of the covered field-of-view is above this 3 sigma limit; (iii) the data have a blue-to-red relative flux calibration within a few percent in most of the wavelength range; (iv) the absolute flux calibration is accurate within similar to 8% with respect to SDSS; (v) the measured spectral resolution is similar to 85 km s(-1) for V1200 (similar to 150 km s(-1) for V500); (vi) the estimated accuracy of the wavelength calibration is similar to 5 km s(-1) for the V1200 data (similar to 10 km s(-1) for the V500 data); (vii) the aperture matched CALIFA and SDSS spectra are qualitatively and quantitatively similar. Finally, we show that we are able to carry out all measurements indicated above, recovering the properties of the stellar populations, the ionized gas and the kinematics of both components. The associated maps illustrate the spatial variation of these parameters across the field, reemphasizing the redshift dependence of single aperture spectroscopic measurements. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.

1,143 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a novel technology that combines the power of the multi-object spectrograph with the spatial multiplex advantage of an integral field spectrogram (IFS).
Abstract: We demonstrate a novel technology that combines the power of the multi-object spectrograph with the spatial multiplex advantage of an integral field spectrograph (IFS). The SydneyAAO (Australian Astronomical Observatory) Multi-object IFS (SAMI) is a prototype widefield system at the Anglo-Australian Telescope (AAT) that allows 13 imaging fibre bundles (‘hexabundles’) to be deployed over a 1-degree diameter field of view. Each hexabundle comprises 61 lightly fused multi-mode fibres with reduced cladding and yields a 75 per cent filling factor. Each fibre core diameter subtends 1.6 arcsec on the sky and each hexabundle has a field of view of 15 arcsec diameter. The fibres are fed to the flexible AAOmega double-beam spectrograph, which can be used at a range of spectral resolutions (R = λ/δλ ≈ 1700–13 000) over the optical spectrum (3700–9500 A). We present the first spectroscopic results obtained with SAMI for a sample of galaxies at z ≈ 0.05. We discuss the prospects of implementing hexabundles at a much higher multiplex over wider fields of view in order to carry out spatially resolved spectroscopic surveys of 10 4 –10 5 galaxies.

586 citations

Journal ArticleDOI
Jochen Liske1, Ivan K. Baldry2, Simon P. Driver3, Simon P. Driver4, Richard J. Tuffs5, Mehmet Alpaslan6, E. Andrae5, Sarah Brough7, Michelle E. Cluver8, Meiert W. Grootes5, Madusha Gunawardhana9, Lee S. Kelvin, Jonathan Loveday10, Aaron S. G. Robotham3, Edward N. Taylor11, Steven P. Bamford12, Jonathan Bland-Hawthorn13, Michael J. I. Brown14, Michael J. Drinkwater15, Andrew M. Hopkins7, Martin Meyer3, Peder Norberg9, John A. Peacock16, N. K. Agius17, Stephen K. Andrews3, Amanda E. Bauer7, J. H. Y. Ching13, Matthew Colless18, Christopher J. Conselice12, Scott M. Croom13, Luke J. M. Davies3, R. De Propris19, Loretta Dunne20, Loretta Dunne16, Elizabeth Eardley16, Simon Ellis7, Caroline Foster7, Carlos S. Frenk9, Boris Häußler21, Boris Häußler22, Benne W. Holwerda23, Cullan Howlett24, Cullan Howlett10, H.. Ibarra25, Matt J. Jarvis21, Matt J. Jarvis8, D. H. Jones14, D. H. Jones26, Prajwal R. Kafle3, Cedric G. Lacey9, Rebecca A. Lange3, Maritza A. Lara-López7, Maritza A. Lara-López27, Angel R. Lopez-Sanchez7, Angel R. Lopez-Sanchez26, Steve Maddox16, Steve Maddox20, Barry F. Madore28, T. Mcnaught-Roberts9, Amanda J. Moffett3, Robert C. Nichol, Matt S. Owers7, David Palamara14, Samantha J. Penny, Steven Phillipps29, Kevin A. Pimbblet14, Kevin A. Pimbblet30, Cristina Popescu17, Cristina Popescu31, Cristina Popescu5, Matthew Prescott8, R. Proctor, Elaine M. Sadler13, Anne E. Sansom17, Mark Seibert28, Rob Sharp18, William J. Sutherland32, J. A. Vázquez-Mata10, E. van Kampen1, Stephen M. Wilkins10, R.. Williams33, A. H. Wright3 
TL;DR: The Galaxy And Mass Assembly (GAMA) survey as mentioned in this paper is one of the largest contemporary spectroscopic surveys of low redshift galaxies, covering an area of ∼286 deg2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, and collecting spectra and reliable redshifts for 238'000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope.
Abstract: The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ∼286 deg2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm–1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sersic fits, stellar masses, Hα-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72 225 objects in total). The data base serving these data is available at http://www.gama-survey.org/.

494 citations

Journal ArticleDOI
TL;DR: In this paper, the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements are reviewed, and the expected uncertainty of these calibrations as a function of the index value or abundance derived is analyzed.
Abstract: The use of integral field spectroscopy is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies, both locally and at high redshift. Many studies have used these fluxes to derive the gas-phase metallicity of the galaxies by applying the so-called strong-line methods. However, the metallicity indicators that these datasets use were empirically calibrated using few direct abundance data points (T_e-based measurements). Furthermore, a precise determination of the prediction intervals of these indicators is commonly lacking in these calibrations. Such limitations might lead to systematic errors in determining the gas-phase metallicity, especially at high redshift, which might have a strong impact on our understanding of the chemical evolution of the Universe. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements. We pay special attention to (1) the expected uncertainty of these calibrations as a function of the index value or abundance derived and (2) the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of T_e-based H II regions to date. This new dataset compiles the Te-based abundances of 603 H II regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present a comparison between our revisited calibrations with a total of 3423 additional CALIFA H II complexes with abundances derived using the ONS calibration from the literature. The combined analysis of T_e-based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 single-ratio indicators, in terms of all statistical significance, quality, and coverage of the parameters space. In particular, we infer that these indicators show shallower abundance dependencies and statistically significant offsets compared to others'. The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data), reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations), respectively.

479 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the largest and most homogeneous catalog of H ii regions and associations compiled so far, consisting of more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey.
Abstract: We present the largest and most homogeneous catalog of H ii regions and associations compiled so far The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey We describe the procedures used to detect, select, and analyze the spectroscopic properties of these ionized regions In the current study we focus on characterizing of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojecteddistribution of H ii regions We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of α_O/H = −01 dex/r_e between 03 and 2 disk effective radii (r_e), and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius The slope is independent of morphology, the incidence of bars, absolute magnitude, or mass Only those galaxies with evidence of interactions and/or clear merging systems present a significantly shallower gradient, consistent with previous results The majority of the 94 galaxies with H ii regions detected beyond two disk effective radii present a flattening in the oxygen abundance The flattening is statistically significant We cannot provide a conclusive answer regarding the origin of this flattening However, our results indicate that its origin is most probably related to the secular evolution of galaxies Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies All of them are non-interacting, mostly unbarred Sb/Sbc galaxies This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes Our result suggests that galaxy disks grow inside-out, with metal enrichment driven by the local star formation history and with a small variation galaxy-by-galaxy At a certain galactocentric distance, the oxygen abundance seems to be correlated well with the stellar mass density and total stellar mass of the galaxies, independently of other properties of the galaxies Other processes, such as radial mixing and inflows/outflows seem to have a limited effect on shaping of the radial distribution of oxygen abundances, although they are not ruled out

474 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Abstract: Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.

3,104 citations

Journal ArticleDOI
TL;DR: The Virgo Consortium's EAGLE project as discussed by the authors is a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes, where thermal energy is injected into the gas, allowing winds to develop without predetermined speed or mass loading factors.
Abstract: We introduce the Virgo Consortium's EAGLE project, a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes. We discuss the limitations of such simulations in light of their finite resolution and poorly constrained subgrid physics, and how these affect their predictive power. One major improvement is our treatment of feedback from massive stars and AGN in which thermal energy is injected into the gas without the need to turn off cooling or hydrodynamical forces, allowing winds to develop without predetermined speed or mass loading factors. Because the feedback efficiencies cannot be predicted from first principles, we calibrate them to the z~0 galaxy stellar mass function and the amplitude of the galaxy-central black hole mass relation, also taking galaxy sizes into account. The observed galaxy mass function is reproduced to ≲0.2 dex over the full mass range, 108

2,828 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Abstract: Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.

1,626 citations