scispace - formally typeset
Search or ask a question
Author

Angel Santamaria-Navarro

Bio: Angel Santamaria-Navarro is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Odometry & Inertial measurement unit. The author has an hindex of 13, co-authored 32 publications receiving 499 citations. Previous affiliations of Angel Santamaria-Navarro include Spanish National Research Council & Polytechnic University of Catalonia.

Papers
More filters
Journal ArticleDOI
TL;DR: This article summarizes new aerial robotic manipulation technologies and methods-aerial robotic manipulators with dual arms and multidirectional thrusters-developed in the AEROARMS project for outdoor industrial inspection and maintenance (I&M).
Abstract: This article summarizes new aerial robotic manipulation technologies and methods-aerial robotic manipulators with dual arms and multidirectional thrusters-developed in the AEROARMS project for outdoor industrial inspection and maintenance (IaM).

167 citations

Journal ArticleDOI
01 Jan 2016
TL;DR: A hybrid visual servoing with a hierarchical task-composition control framework is described for aerial manipulation, i.e., for the control of an aerial vehicle endowed with a robot arm that suitably combines into a unique hybrid-control framework the main benefits of both image-based and position-based control schemes.
Abstract: In this letter, a hybrid visual servoing with a hierarchical task-composition control framework is described for aerial manipulation, i.e., for the control of an aerial vehicle endowed with a robot arm. The proposed approach suitably combines into a unique hybrid-control framework the main benefits of both image-based and position-based control schemes. Moreover, the underactuation of the aerial vehicle has been explicitly taken into account in a general formulation, together with a dynamic smooth activation mechanism. Both simulation case studies and experiments are presented to demonstrate the performance of the proposed technique.

107 citations

Journal ArticleDOI
TL;DR: This paper hierarchically adds one task to reduce dynamic effects by vertically aligning the arm center of gravity to the multirotor gravitational vector, and another one that keeps the arm close to a desired configuration of high manipulability and avoiding arm joint limits.
Abstract: This paper addresses the problem of autonomous servoing an unmanned redundant aerial manipulator using computer vision. The overactuation of the system is exploited by means of a hierarchical control law, which allows to prioritize several tasks during flight. We propose a safety-related primary task to avoid possible collisions. As a secondary task, we present an uncalibrated image-based visual servo strategy to drive the arm end-effector to a desired position and orientation by using a camera attached to it. In contrast to the previous visual servo approaches, a known value of camera focal length is not strictly required. To further improve flight behavior, we hierarchically add one task to reduce dynamic effects by vertically aligning the arm center of gravity to the multirotor gravitational vector, and another one that keeps the arm close to a desired configuration of high manipulability and avoiding arm joint limits. The performance of the hierarchical control law, with and without activation of each of the tasks, is shown in simulations and in real experiments confirming the viability of such prioritized control scheme for aerial manipulation.

60 citations

Proceedings ArticleDOI
01 May 2020
TL;DR: The accuracy of the method is comparable to VI in conditions favorable to VI, and far exceeds the accuracy of VI when conditions deteriorate, which makes it an attractive solution for platforms with limitations around payload and longevity.
Abstract: We present an approach for estimating the body-frame velocity of a mobile robot. We combine measurements from a millimeter-wave radar-on-a-chip sensor and an inertial measurement unit (IMU) in a batch optimization over a sliding window of recent measurements. The sensor suite employed is lightweight, low-power, and is invariant to ambient lighting conditions. This makes the proposed approach an attractive solution for platforms with limitations around payload and longevity, such as aerial vehicles conducting autonomous exploration in perceptually degraded operating conditions, including subterranean environments. We compare our radar-inertial velocity estimates to those from a visual-inertial (VI) approach. We show the accuracy of our method is comparable to VI in conditions favorable to VI, and far exceeds the accuracy of VI when conditions deteriorate.

54 citations

Proceedings ArticleDOI
13 Jun 2017
TL;DR: In this article, a nonlinear model predictive controller is presented to follow desired 3D trajectories with the end effector of an unmanned aerial manipulator (i.e., a multirotor with a serial arm attached).
Abstract: This paper presents a nonlinear model predictive controller to follow desired 3D trajectories with the end effector of an unmanned aerial manipulator (i.e., a multirotor with a serial arm attached). To the knowledge of the authors, this is the first time that such controller runs online and on board a limited computational unit to drive a kinematically augmented aerial vehicle. Besides the trajectory following target, we explore the possibility of accomplishing other tasks during flight by taking advantage of the system redundancy. We define several tasks designed for aerial manipulators and show in simulation case studies how they can be achieved by either a weighting strategy, within a main optimization process, or a hierarchical approach consisting on nested optimizations. Moreover, experiments are presented to demonstrate the performance of such controller in a real robot.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article summarizes new aerial robotic manipulation technologies and methods-aerial robotic manipulators with dual arms and multidirectional thrusters-developed in the AEROARMS project for outdoor industrial inspection and maintenance (I&M).
Abstract: This article summarizes new aerial robotic manipulation technologies and methods-aerial robotic manipulators with dual arms and multidirectional thrusters-developed in the AEROARMS project for outdoor industrial inspection and maintenance (IaM).

167 citations

Journal ArticleDOI
TL;DR: A metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking control and obstacle avoidance of a redundant manipulator and simulations results using an LBR IIWA seven-DOF manipulator are presented.
Abstract: In this article, we present a metaheuristic-based control framework, called beetle antennae olfactory recurrent neural network, for simultaneous tracking control and obstacle avoidance of a redundant manipulator. The ability to avoid obstacles while tracking a predefined reference path is critical for any industrial manipulator. The formulated control framework unifies the tracking control and obstacle avoidance into a single constrained optimization problem by introducing a penalty term into the objective function, which actively rewards the optimizer for avoiding the obstacles. One of the significant features of the proposed framework is the way that the penalty term is formulated following a straightforward principle: maximize the minimum distance between a manipulator and an obstacle. The distance calculations are based on Gilbert–Johnson–Keerthi algorithm, which calculates the distance between a manipulator and an obstacle by directly using their three-dimensional geometries, which also implies that our algorithm works for a manipulator and an arbitrarily shaped obstacle. Theoretical treatment proves the stability and convergence, and simulations results using an LBR IIWA seven-DOF manipulator are presented to analyze the performance of the proposed framework.

162 citations

Journal ArticleDOI
TL;DR: An extensive study of aerial vehicles and manipulation/interaction mechanisms in aerial manipulation is presented and the shortcomings of current aerial manipulation research are highlighted and a number of directions for future research are suggested.

144 citations

Journal ArticleDOI
Moju Zhao1, Tomoki Anzai1, Fan Shi1, Xiangyu Chen1, Kei Okada1, Masayuki Inaba1 
15 Jan 2018
TL;DR: A novel transformable aerial robot called DRAGON, which is a dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom (DoF) aerial transformation, is introduced.
Abstract: In this letter, we introduce a novel transformable aerial robot called DRAGON, which is a dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom (DoF) aerial transformation. The new aerial robot can control the full pose in $\mathsf {SE}(3)$ regarding the center of gravity (CoG) of multilinks and can render the multi-DoF aerial transformation, which is accomplished by the original two-DoF force vectoring mechanism on each link called the dual-rotor gimbal module. The dynamics is derived on the basis of the special definition of CoG orientation, followed by a control method decoupled into thrust force control and rotor gimbal control. In the thrust force control, the minimum force norm is considered to avoid force saturation, and the rotor gimbal control method is developed to enhance both translational and rotational stabilities during hovering and large-scale aerial transformation. The prototype composed of four links is constructed, and associated preliminary experiments are performed. The feasibility of the novel mechanical design and the proposed control method for the aerial transformation is demonstrated.

133 citations