scispace - formally typeset
Search or ask a question
Author

Angela B. Seddon

Bio: Angela B. Seddon is an academic researcher from University of Nottingham. The author has contributed to research in topics: Chalcogenide glass & Chalcogenide. The author has an hindex of 36, co-authored 291 publications receiving 5687 citations. Previous affiliations of Angela B. Seddon include Center for Advanced Materials & University of Sheffield.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a record-breaking spectral coverage of 1.4-13.3 µm was achieved by launching intense ultra-short pulses into short pieces of ultra-high numerical aperture step-index chalcogenide glass optical fiber consisting of a GaAsSe cladding and an As2Se3 core.
Abstract: Mid-infrared supercontinuum generation with a record-breaking spectral coverage of 1.4–13.3 µm is demonstrated by launching intense ultra-short pulses into short pieces of ultra-high numerical aperture step-index chalcogenide glass optical fibre consisting of a GaAsSe cladding and an As2Se3 core.

785 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an update of glass preparation in bulk, fibre and film form; optical and thermal properties, and potential applications of chalcogenide glasses.
Abstract: The author provides an update of: glass preparation in bulk, fibre and film form; optical and thermal properties, and potential applications of chalcogenide glasses.

433 citations

Journal ArticleDOI
TL;DR: The progress, and current challenges, in fabricating rare-earth-doped chalcogenide-glass fibers for developing mid-infrared (IR) fiber lasers are reviewed and for the first time a coherent explanation is forwarded for the failure to date to develop a gallium-lanthanum-sulfide glass mid-IR fiber laser.
Abstract: The progress, and current challenges, in fabricating rare-earth-doped chalcogenide-glass fibers for developing mid-infrared (IR) fiber lasers are reviewed. For the first time a coherent explanation is forwarded for the failure to date to develop a gallium-lanthanum-sulfide glass mid-IR fiber laser. For the more covalent chalcogenide glasses, the importance of optimizing the glass host and glass processing routes in order to minimize non-radiative decay and to avoid rare earth ion clustering and glass devitrification is discussed. For the first time a new idea is explored to explain an additional method of non-radiative depopulation of the excited state in the mid-IR that has not been properly recognized before: that of impurity multiphonon relaxation. Practical characterization of candidate selenide glasses is presented. Potential applications of mid-infrared fiber lasers are suggested.

258 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that oxy-fluoride glass ceramics, with typical composition, 32(SiO2):9(AlO1.5):31.5(PbF2):5.5 (ErF3)
Abstract: We show that oxy-fluoride glass ceramics, with typical composition, 32(SiO2):9(AlO1.5):31.5(CdF2):18.5(PbF2):5.5(ZnF2): 3.5(ErF3) mol % have potential applications in telecommunications. Upon heat treatment, Er3+ nucleates the growth of the nanocrystalline β-PbF2, which acts as its host. Heat treatment at 440 °C for 5 h and at 390 °C for 3 h gave rise to ∼12 and ∼2.5 nm diameter crystals, respectively. The emission band of Er3+ in the 1.54 μm telecommunications window (4I13/2→4I15/2 transition, at the half-height width) was 75 nm in the former and 90 nm in the latter case, while 4I13/2↔4I15/2 absorption and emission bands became wavelength divergent in both cases. Also in the latter case, the spectrum was flat from 1.53 to 1.56 μm. The evolution of spectral behavior is explained by changes in average site geometry of the Er3+ dopant, related to the α→β phase transition of PbF2, which is stimulated by heat treatment.

217 citations

Journal ArticleDOI
TL;DR: In this paper, the suitability of ormosils as photonic materials was investigated and a detailed assignment of mid-infrared vibrational absorption bands was given, which allowed assignment of overtone and combination bands in the nearinfrared region and an assessment of residual water contamination, which can be expelled by evacuation.
Abstract: The suitability of ormosils as photonic materials was investigated. Vinyl and phenyl silicates were synthesised below 100°C. A detailed assignment of mid-infrared vibrational absorption bands is given. This allowed assignment of overtone and combination bands in the near-infrared region and an assessment of residual water contamination, which is low and can be expelled by evacuation. These ormosils have low intrinsic and extrinsic optical absorption in the visible spectral region and at useful wavelengths in the near-infrared.

205 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: The current status of the field of organic solar cells and the important parameters to improve their performance are discussed in this paper. But, the two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents.
Abstract: Organic solar cell research has developed during the past 30 years, but especially in the last decade it has attracted scientific and economic interest triggered by a rapid increase in power conversion efficiencies. This was achieved by the introduction of new materials, improved materials engineering, and more sophisticated device structures. Today, solar power conversion efficiencies in excess of 3% have been accomplished with several device concepts. Though efficiencies of these thin-film organicdevices have not yet reached those of their inorganic counterparts (η ≈ 10–20%); the perspective of cheap production (employing, e.g., roll-to-roll processes) drives the development of organic photovoltaic devices further in a dynamic way. The two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents. The field of organic solar cells profited well from the development of light-emitting diodes based on similar technologies, which have entered the market recently. We review here the current status of the field of organic solar cells and discuss different production technologies as well as study the important parameters to improve their performance.

2,492 citations

Journal ArticleDOI
TL;DR: This paper reviews the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in Terms of high-power performance.
Abstract: The rise in output power from rare-earth-doped fiber sources over the past decade, via the use of cladding-pumped fiber architectures, has been dramatic, leading to a range of fiber-based devices with outstanding performance in terms of output power, beam quality, overall efficiency, and flexibility with regard to operating wavelength and radiation format. This success in the high-power arena is largely due to the fiber’s geometry, which provides considerable resilience to the effects of heat generation in the core, and facilitates efficient conversion from relatively low-brightness diode pump radiation to high-brightness laser output. In this paper we review the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in terms of high-power performance. We then review the current status and challenges of extending the technology to other rare-earth dopants and associated wavelengths of operation. Throughout we identify the key factors currently limiting fiber laser performance in different operating regimes—in particular thermal management, optical nonlinearity, and damage. Finally, we speculate as to the likely developments in pump laser technology, fiber design and fabrication, architectural approaches, and functionality that lie ahead in the coming decade and the implications they have on fiber laser performance and industrial/scientific adoption.

1,689 citations

Journal ArticleDOI
TL;DR: In this article, a review of polymer morphology is presented with respect to solvent selection and various annealing processes, which facilitates the formation of optimal percolation paths and therefore provides a simple approach to improve photovoltaic performance.
Abstract: Polymer morphology has proven to be extremely important in determining the optoelectronic properties in polymer-based devices. The understanding and manipulation of polymer morphology has been the focus of electronic and optoelectronic polymer-device research. In this article, recent advances in the understanding and controlling of polymer morphology are reviewed with respect to the solvent selection and various annealing processes. We also review the mixed-solvent effects on the dynamics of film evolution in selected polymer-blend systems, which facilitate the formation of optimal percolation paths and therefore provide a simple approach to improve photovoltaic performance. Recently, the occurrence of vertical phase separation has been found in some polymer:fullerene bulk heterojunctions. [1-3] The origin and applications of this inhomogeneous distribution of the polymer donor and fullerene acceptor are addressed. The current status and device physics of the inverted structure solar cells is also reviewed, including the advantage of utilizing the spontaneous vertical phase separation, which provides a promising alternative to the conventional structure for obtaining higher device performance.

1,254 citations