scispace - formally typeset
Search or ask a question
Author

Angela Rita Elia

Bio: Angela Rita Elia is an academic researcher from University of Turin. The author has contributed to research in topics: Cytotoxic T cell & CD8. The author has an hindex of 13, co-authored 18 publications receiving 515 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This study provides the first demonstration that hypoxia inhibits antigen uptake by DCs and profoundly changes the DC chemokine expression profile and may have a critical role in DC differentiation, adaptation, and activation in inflamed tissues.
Abstract: Dendritic cells (DCs) are the most potent antigen-presenting cells and fine-tune the immune response. We have investigated hypoxia's effects on the differentiation and maturation of DCs from human monocytes in vitro, and have shown that it affects DC functions. Hypoxic immature DCs (H-iDCs) significantly fail to capture antigens through down-modulation of the RhoA/Ezrin-Radixin-Moesin pathway and the expression of CD206. Moreover, H-iDCs released higher levels of CXCL1, VEGF, CCL20, CXCL8, and CXCL10 but decreased levels of CCL2 and CCL18, which predict a different ability to recruit neutrophils rather than monocytes and create a proinflammatory and proangiogenic environment. By contrast, hypoxia has no effect on DC maturation. Hypoxic mature DCs display a mature phenotype and activate both allogeneic and specific T cells like normoxic mDCs. This study provides the first demonstration that hypoxia inhibits antigen uptake by DCs and profoundly changes the DC chemokine expression profile and may have a critical role in DC differentiation, adaptation, and activation in inflamed tissues.

91 citations

Journal ArticleDOI
TL;DR: It is speculated that Hi-DCs have the tendency to leave the hypoxic tissue and follow the chemokine gradient toward normoxic areas where they can mature and contribute to the inflammatory process.
Abstract: Hypoxia is a condition of low oxygen tension occurring in inflammatory tissues. Dendritic cells (DC) are professional antigen-presenting cells whose differentiation, migration, and activities are intrinsically linked to the microenvironment. DCs will home and migrate through pathologic tissues before reaching their final destination in the lymph node. We studied the differentiation of human monocytes into immature DCs (iDCs) in a hypoxic microenvironment. We generated iDC in vitro under normoxic (iDCs) or hypoxic (Hi-DCs) conditions and examined the hypoxia-responsive element in the promoter, gene expression, and biochemical KEGG pathways. Hi-DCs had an interesting phenotype represented by up-regulation of genes associated with cell movement/migration. In addition, the Hi-DC cytokine/receptor pathway showed a dichotomy between down-regulated chemokines and up-regulated chemokine receptor mRNA expression. We showed that CCR3, CX3CR1, and CCR2 are hypoxia-inducible genes and that CCL18, CCL23, CCL26, CCL24, and CCL14 are inhibited by hypoxia. A strong chemotactic response to CCR2 and CXCR4 agonists distinguished Hi-DCs from iDCs at a functional level. The hypoxic microenvironment promotes the differentiation of Hi-DCs, which differs from iDCs for gene expression profile and function. The most prominent characteristic of Hi-DCs is the expression of a mobility/migratory rather than inflammatory phenotype. We speculate that Hi-DCs have the tendency to leave the hypoxic tissue and follow the chemokine gradient toward normoxic areas where they can mature and contribute to the inflammatory process.

88 citations

Journal ArticleDOI
TL;DR: Evidence is provided deepening their role and interrelationship in the process of metastatic dissemination of cancer cells via tumor-endothelial cell interactions, with possible implications for microRNA-mediated therapeutic interventions aimed at blocking cancer extravasation.
Abstract: miR-214 and miR-148b have been proposed to antagonize the effects of each other in enabling or blocking metastasis, respectively. In this study, we provide evidence deepening their role and interrelationship in the process of metastatic dissemination. Depleting miR-214 or elevating miR-148b blocked the dissemination of melanoma or breast cancer cells, an effect that could be accentuated by dual alteration. Mechanistic investigations indicated that dual alteration suppressed passage of malignant cells through the blood vessel endothelium by reducing expression of the cell adhesion molecules ITGA5 and ALCAM. Notably, transendothelial migration in vitro and extravasation in vivo impaired by singly alternating miR-214 or miR-148b could be overridden by overexpression of ITGA5 or ALCAM in the same tumor cells. In clinical specimens of primary breast cancer or metastatic melanoma, we found a positive correlation between miR-214 and ITGA5 or ALCAM along with an inverse correlation of miR-214 and miR-148b in the same specimens. Our findings define an antagonistic relationship of miR-214 and miR-148b in determining the dissemination of cancer cells via tumor-endothelial cell interactions, with possible implications for microRNA-mediated therapeutic interventions aimed at blocking cancer extravasation. Cancer Res; 76(17); 5151-62. ©2016 AACR.

62 citations

Journal ArticleDOI
06 Jan 2014-PLOS ONE
TL;DR: The investigation revealed that a computational analysis of cancer gene expression datasets can be a relevant tool to identify microRNAs involved in cancer progression and that miR-223 has a prominent role in breast malignancy that could potentially be exploited therapeutically.
Abstract: MicroRNAs are single-stranded non-coding RNAs that simultaneously down-modulate the expression of multiple genes post-transcriptionally by binding to the 3′UTRs of target mRNAs Here we used computational methods to predict microRNAs relevant in breast cancer progression Specifically, we applied different microRNA target prediction algorithms to various groups of differentially expressed protein-coding genes obtained from four breast cancer datasets Six potential candidates were identified, among them miR-223, previously described to be highly expressed in the tumor microenvironment and known to be actively transferred into breast cancer cells To investigate the function of miR-223 in tumorigenesis and to define its molecular mechanism, we overexpressed miR-223 in breast cancer cells in a transient or stable manner Alternatively we overexpressed miR-223 in mouse embryonic fibroblasts or HEK293 cells and used their conditioned medium to treat tumor cells With both approaches, we obtained elevated levels of miR-223 in tumor cells and observed decreased migration, increased cell death in anoikis conditions and augmented sensitivity to chemotherapy but no effect on adhesion and proliferation The analysis of miR-223 predicted targets revealed enrichment in cell death and survival-related genes and in pathways frequently altered in breast cancer Among these genes, we showed that protein levels for STAT5A, ITGA3 and NRAS were modulated by miR-223 In addition, we proved that STAT5A is a direct miR-223 target and highlighted a possible correlation between miR-223 and STAT5A in migration and chemotherapy response Our investigation revealed that a computational analysis of cancer gene expression datasets can be a relevant tool to identify microRNAs involved in cancer progression and that miR-223 has a prominent role in breast malignancy that could potentially be exploited therapeutically

61 citations

Journal ArticleDOI
24 Sep 2008-PLOS ONE
TL;DR: This study reports that Activin A induces the differentiation of circulating CD14+ cells into LC and proposes that this cytokine represents a new pathway, alternative to TGFβ, responsible for LC differentiation during inflammatory/autoimmune conditions.
Abstract: Langerhans cells (LC) represent a well characterized subset of dendritic cells located in the epidermis of skin and mucosae. In vivo, they originate from resident and blood-borne precursors in the presence of keratinocyte-derived TGFβ. Ιn vitro, LC can be generated from monocytes in the presence of GM-CSF, IL-4 and TGFβ. However, the signals that induce LC during an inflammatory reaction are not fully investigated. Here we report that Activin A, a TGFβ family member induced by pro-inflammatory cytokines and involved in skin morphogenesis and wound healing, induces the differentiation of human monocytes into LC in the absence of TGFβ. Activin A-induced LC are Langerin+, Birbeck granules+, E-cadherin+, CLA+ and CCR6+ and possess typical APC functions. In human skin explants, intradermal injection of Activin A increased the number of CD1a+ and Langerin+ cells in both the epidermis and dermis by promoting the differentiation of resident precursor cells. High levels of Activin A were present in the upper epidermal layers and in the dermis of Lichen Planus biopsies in association with a marked infiltration of CD1a+ and Langerin+ cells. This study reports that Activin A induces the differentiation of circulating CD14+ cells into LC. Since Activin A is abundantly produced during inflammatory conditions which are also characterized by increased numbers of LC, we propose that this cytokine represents a new pathway, alternative to TGFβ, responsible for LC differentiation during inflammatory/autoimmune conditions.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work considers myeloid cells as an intricately connected, complex, single system and focuses on how tumours manipulate the myeloids system to evade the host immune response.
Abstract: Here, the authors discuss how the immune activities of myeloid cells, such as macrophages and dendritic cells, are affected by the immunosuppressive tumour environment. They propose that tumours can evade the immune system by promoting aberrant differentiation and function of the entire myeloid system.

2,966 citations

Journal ArticleDOI
TL;DR: The therapeutic implications of recent findings that specific myeloid cell populations modulate the responses of tumours to agents such as chemotherapy and some anti-angiogenic therapies are discussed.
Abstract: The use of various transgenic mouse models and analysis of human tumour biopsies has shown that bone marrow-derived myeloid cells, such as macrophages, neutrophils, eosinophils, mast cells and dendritic cells, have an important role in regulating the formation and maintenance of blood vessels in tumours. In this Review the evidence for each of these cell types driving tumour angiogenesis is outlined, along with the mechanisms regulating their recruitment and activation by the tumour microenvironment. We also discuss the therapeutic implications of recent findings that specific myeloid cell populations modulate the responses of tumours to agents such as chemotherapy and some anti-angiogenic therapies.

1,548 citations

Journal ArticleDOI
16 Oct 2014-Immunity
TL;DR: How oxygen sensing in the immune microenvironment shapes immunological response is discussed and how HIF and the hypoxia pathway control innate and adaptive immunity is examined.

822 citations

Journal ArticleDOI
TL;DR: Recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions are discussed, and a subset of the operative signal transduction mechanisms that have begun to emerge are overviewed.
Abstract: The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

787 citations

Journal ArticleDOI
25 Jul 2013-Immunity
TL;DR: The ways in which tumors exert immune suppression are reviewed and the new therapies that seek to reverse this phenomenon and promote anti-tumor immunity are highlighted.

489 citations