scispace - formally typeset
Search or ask a question
Author

Angelina Markina

Bio: Angelina Markina is an academic researcher from Kazan Federal University. The author has contributed to research in topics: Microstrip antenna & Microstrip. The author has an hindex of 4, co-authored 14 publications receiving 45 citations.

Papers
More filters
Proceedings ArticleDOI
01 Sep 2020
TL;DR: An approach to design using regression models of a tooth-shaped antenna for the desired wireless network parameters is presented and optimization problems are constructed and numerically solved, which allows to quickly determine the optimal values of the geometric parameters of the tooth- shaped radiator.
Abstract: The design of a symmetrical six-tooth-shaped monopole microstrip antenna is considered. The effect of rectangular cutouts on the radiator and the length and the width of the radiator on the reflection coefficient of the base frequency antenna is studied. A nonlinear regression model with good accuracy is constructed for this characteristic. An approach to design using regression models of a tooth-shaped antenna for the desired wireless network parameters is presented. Optimization problems are constructed and numerically solved, which allows to quickly determine the optimal values of the geometric parameters of the tooth-shaped radiator. The application of this approach to the design of a six-tooth-shaped single-band antenna for Wi-Fi applications is demonstrated.

1 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of the electromagnetic wave diffraction by a rectangular perfectly conducting metal plate is considered and the solution of the problem is reduced to the integral equations for the tangential components of the magnetic intensity vector on the metal surface.
Abstract: The classical problem of the electromagnetic wave diffraction by a rectangular perfectly conducting metal plate is considered. The solution of the problem is reduced to the solving integral equations for the tangential components of the magnetic intensity vector on the metal surface. The collocation method is applied to the equation with the representation of the sought functions in the form of a series in the Chebyshev polynomials of the 1st and 2nd kind. Numerical experiments have been carried out for a different number of terms of the Fourier series of the sought functions and a different number of collocation points. Graphs comparing the results obtained for various parameters are presented. It is shown that an increase in the number of collocation points leads to a greater stability of the solution. It is concluded that there is no clear-cut convergence of the solution with this choice of collocation points.

1 citations

Book ChapterDOI
05 Dec 2020
TL;DR: In this article, the application of a multilayer perceptron (MLP) for calculating the electrodynamic characteristics of a monopole microstrip four-tooth-shaped antenna was considered.
Abstract: The application of a multilayer perceptron (MLP) for calculating the electrodynamic characteristics of a monopole microstrip four-tooth-shaped antenna (direct problem) as well as for solving the problem of synthesizing a four-tooth-shaped antenna for given characteristics (inverse problem) is considered. A backpropagation algorithm is used to train MLP. Various MLP architectures are considered. The errors of MLP prediction of various electrodynamic characteristics of the antenna are estimated. The graphs of dependences of a network operation error on the number of neurons in the hidden layers are presented. The proposed MLP architecture with two hidden layers each having 16 neurons is found to give a sufficient accuracy. A conclusion is made regarding a more accurate determination of parameters with a given architecture using MLP in comparison with regression models.

1 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Jiayuan Lu1, Hao Chi Zhang1, Pei Hang He1, Le Peng Zhang1, Tie Jun Cui1 
TL;DR: In this article, a corrugated microstrip (CM) line is employed as the resonating part of the antenna to achieve good radiating behavior and low profile simultaneously, and the measured results show that the proposed antenna can achieve a beamwidth of 70° in E-plane and 75° in H-plane with a gain tolerance of 3 dB.
Abstract: We present a new method to design miniaturized antennas using a corrugated microstrip (CM) line, which shows good slow wave characteristic in the required frequency band. To achieve good radiating behavior and low profile simultaneously, CM is employed as the resonating part of the antenna. The impact of the CM propagation constant on the antenna is discussed in detail. The miniaturized antenna is designed and measured to verify the feasibility of the design method. The measured results show that the proposed antenna can achieve a beamwidth of 70° in E-plane and 75° in H-plane with a gain tolerance of 3 dB, and the realized peak gain level at the central frequency is 5.15 dBi, which have good agreements to the expected designs. Such results indicate that the proposed antenna exhibits excellent radiation characteristics at the resonant mode. The effective size of the proposed miniaturized antenna is $0.16\lambda _{0}\times 0.16 \lambda _{0}\times 0.04 \lambda _{0}$ at 9 GHz, in which $\lambda _{0}$ is the wavelength of the central frequency.

35 citations

Journal ArticleDOI
04 Jun 2020
TL;DR: In this article, the dependence of the base frequency and the reflection coefficient on the dipole wire length and scale is analyzed, and it is shown that it is possible to distinguish a family of antennas operating at a given (identical) base frequency.
Abstract: Koch-type wire dipole antennas are considered herein. In the case of a first-order prefractal, such antennas differ from a Koch-type dipole by the position of the central vertex of the dipole arm. Earlier, we investigated the dependence of the base frequency for different antenna scales for an arm in the form of a first-order prefractal. In this paper, dipoles for second-order prefractals are considered. The dependence of the base frequency and the reflection coefficient on the dipole wire length and scale is analyzed. It is shown that it is possible to distinguish a family of antennas operating at a given (identical) base frequency. The same length of a Koch-type curve can be obtained with different coordinates of the central vertex. This allows for obtaining numerous antennas with various scales and geometries of the arm. An algorithm for obtaining small antennas for Wi-Fi applications is proposed. Two antennas were obtained: an antenna with the smallest linear dimensions and a minimum antenna for a given reflection coefficient.

14 citations

Journal ArticleDOI
01 Feb 2019
TL;DR: The problem of fast designing of a well-matched symmetrical four-tooth-shaped microstrip antenna at frequency of 2.44 GHz is considered and regression models for wavelength, resistance and bandwidth are used to solve the problem.
Abstract: The problem of fast designing of a well-matched symmetrical four-tooth-shaped microstrip antenna at frequency of 2.44 GHz is considered. To solve the problem, we use regression models for wavelength, resistance and bandwidth. The optimization problem for finding the geometrical parameters of the antenna radiator is formulated by using these models. In the first step of approximation, the antenna is obtained as a solution to the optimization problem. In the next step, the geometry of the radiator is refined so as the base frequency of the antenna is closer to 2.44 GHz.

9 citations

Journal ArticleDOI
01 Jan 2018
TL;DR: In this article, the influence of the base geometric parameters of the antenna on the bandwidth at the base frequency was studied and the regression analysis was carried out and the mathematical model describing the dependence of the bandwidth on the length and the width of the radiator and the depth of the cuts was developed.
Abstract: The microstrip antenna with a symmetrical rectangular radiator and four teeth is described. The influence of the base geometric parameters of the antenna on the bandwidth at the base frequency was studied. The following geometric parameters of the antenna are selected: the length and the width of the radiator, the depth of cuts, the thickness of the substrate, the length of the ground plane and the width of the feed line. The regression analysis was carried out and the mathematical model describing the dependence of the bandwidth on the length and the width of the radiator and the depth of the cuts was developed. The rootmean-square error and the relative absolute error of the model were calculated. The graphs of the bandwidth dependences on the geometric parameters are presented. It was established that the decrease of the bandwidth values is associated with an increase of the radiator width and the substrate thickness. It was shown that a slight influence on the bandwidth are made by the changes of the radiator length and the depths of the cuts only in the case when the radiator width is much smaller than its length. The proposed formula describing the relationship of the bandwidth with the geometric parameters of the antenna can be used to design a four-tooth antenna with wide bandwidth.

9 citations