scispace - formally typeset
Search or ask a question
Author

Angelo Liseno

Bio: Angelo Liseno is an academic researcher from University of Naples Federico II. The author has contributed to research in topics: Antenna (radio) & Singular value. The author has an hindex of 18, co-authored 145 publications receiving 1060 citations.


Papers
More filters
Patent
16 Sep 2010
TL;DR: One- or two-dimensional arrays of electromagnetic scatterers are arranged aperiodically on a curved line or surface Reflectarray antenna comprising: at least one such array of electromagnetic SCatterers and at least receiving and/or transmitting feed, cooperating with said array to generate an antenna beam as mentioned in this paper.
Abstract: One- or two-dimensional array of electromagnetic scatterers, characterized in that the aforementioned scatterers are arranged aperiodically on a curved line or surface Reflectarray antenna comprising: at least one such array of electromagnetic scatterers and at least one receiving and/or transmitting feed, cooperating with said array to generate an antenna beam Method for designing and manufacturing said array and said antenna

161 citations

Journal ArticleDOI
TL;DR: An extensive numerical and experimental analysis endorses the algorithm reliability and accuracy and confirms its usefulness for antennas having a general radiating (vector) behavior, i.e., either focusing or non-focusing.
Abstract: The problem of antenna characterization from phaseless near-field data is addressed by appropriate use of the available information on the Antenna Under Test (AUT) and on the scanning geometry to provide efficient representations for both the unknowns and the data. Such a strategy allows improving the reliability and the accuracy of the proposed characterization algorithm and, at the same time, shortens the overall measurement process. An extensive numerical and experimental analysis, together with a comparison with existing approaches, endorses the algorithm reliability and accuracy and confirms its usefulness for antennas having a general radiating (vector) behavior, i.e., either focusing or non-focusing.

67 citations

Journal ArticleDOI
TL;DR: The investigation is carried out by means of analytical singular-value decomposition of the radiation operator connecting data and unknown, which is made possible by the introduction of suitable scalar products in both the unknown and data spaces.
Abstract: The problem of determining the achievable resolution limits in the reconstruction of a current distribution is considered. The analysis refers to the one-dimensional, scalar case of a rectilinear, bounded electric current distribution when data are collected by measurement of the radiated field over a finite rectilinear observation domain located in the Fresnel zone, orthogonal and centered with respect to the source. The investigation is carried out by means of analytical singular-value decomposition of the radiation operator connecting data and unknown, which is made possible by the introduction of suitable scalar products in both the unknown and data spaces. This strategy permits the use of the results concerning prolate spheroidal wave functions described by B. R. Frieden [Progress in Optics Vol. IX, WolfE., ed. (North-Holland, Amsterdam1971), p. 311.] For values of the space–bandwidth product much larger than 1, the steplike behavior of the singular values reveals that the inverse problem is severely ill posed. This, in turn, makes it mandatory to use regularization to obtain a stable solution and suggests a regularization scheme based on a truncated singular-value decomposition. The task of determining the depth-resolving power is accomplished with resort to Rayleigh’s criterion, and the effect of the geometrical parameters of the measurement configuration is also discussed.

56 citations

Journal ArticleDOI
TL;DR: In this article, the authors address the problem of extracting the maximum amount of information on an electromagnetic field over a domain DO from field sample measurements on a domain DI, with a priori information on the source (or scatterer).
Abstract: [1] We address the problem of extracting the maximum amount of information on an electromagnetic field over a domain DO from field sample measurements on a domain DI, with a priori information on the source (or scatterer). The problem is faced in two steps. In the first one, the source reconstruction is dealt with by taking into account the available a priori information and the optimal probe positioning is determined as that optimizing the singular value dynamics of the involved linear radiation operator. The second step consists of reconstructing the field on DO as that radiated by the retrieved source. An extensive numerical analysis highlights the performance of the approach.

49 citations

Journal ArticleDOI
TL;DR: An extension of the singular value decomposition approach to solve the linearized problem of determining the shape of perfectly conducting objects from knowledge of the scattered electric field is provided and numerical results are presented.
Abstract: The problem of determining the shape of perfectly conducting objects from knowledge of the scattered electric field is considered. The formulation of the problem accommodates the nature of the distribution of the induced surface current density. Thus, as the unknown representing the object’s contour, a single layer distribution is chosen so that the contour of the scatterer is described by its support. The nonlinear unknown-data mapping is then linearized by means of the Kirchhoff approximation, and the problem is recast as the inversion of a linear operator acting on a distribution space. An extension of the singular value decomposition approach to solve the linearized problem is provided and numerical results are presented.

39 citations


Cited by
More filters
Patent
16 Oct 2015
TL;DR: In this paper, the authors describe a system that receives, by a feed point of a dielectric antenna, electromagnetic waves from a core coupled to the feed point without an electrical return path, and radiates a wireless signal responsive to the electromagnetic waves being received at the aperture.
Abstract: Aspects of the subject disclosure may include, for example, receiving, by a feed point of a dielectric antenna, electromagnetic waves from a dielectric core coupled to the feed point without an electrical return path, where at least a portion of the dielectric antenna comprises a conductive surface, directing, by the feed point, the electromagnetic waves to a proximal portion of the dielectric antenna, and radiating, via an aperture of the dielectric antenna, a wireless signal responsive to the electromagnetic waves being received at the aperture. Other embodiments are disclosed.

330 citations

Patent
20 Feb 2014
TL;DR: In this article, surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure, and the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering element.
Abstract: Surface scattering antennas provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure. In some approaches, the scattering elements are patch elements. In some approaches, the scattering elements are made adjustable by disposing an electrically adjustable material, such as a liquid crystal, in proximity to the scattering elements. Methods and systems provide control and adjustment of surface scattering antennas for various applications.

315 citations

Patent
17 May 2016
TL;DR: In this paper, a distributed antenna and backhaul system provide network connectivity for a small cell deployment using high-bandwidth, millimeter-wave communications and existing power line infrastructure, rather than building new structures, and installing additional fiber and cable.
Abstract: A distributed antenna and backhaul system provide network connectivity for a small cell deployment. Rather than building new structures, and installing additional fiber and cable, embodiments described herein disclose using high-bandwidth, millimeter-wave communications and existing power line infrastructure. Above ground backhaul connections via power lines and line-of-sight millimeter-wave band signals as well as underground backhaul connections via buried electrical conduits can provide connectivity to the distributed base stations. An overhead millimeter-wave system can also be used to provide backhaul connectivity. Modules can be placed onto existing infrastructure, such as streetlights and utility poles, and the modules can contain base stations and antennas to transmit the millimeter-waves to and from other modules.

298 citations

Patent
07 Jun 2016
TL;DR: In this article, a distributed antenna system is provided that frequency shifts the output of one or more microcells to a 60 GHz or higher frequency range for transmission to a set of distributed antennas.
Abstract: A distributed antenna system is provided that frequency shifts the output of one or more microcells to a 60 GHz or higher frequency range for transmission to a set of distributed antennas. The cellular band outputs of these microcell base station devices are used to modulate a 60 GHz (or higher) carrier wave, yielding a group of subcarriers on the 60 GHz carrier wave. This group will then be transmitted in the air via analog microwave RF unit, after which it can be repeated or radiated to the surrounding area. The repeaters amplify the signal and resend it on the air again toward the next repeater. In places where a microcell is required, the 60 GHz signal is shifted in frequency back to its original frequency (e.g., the 1.9 GHz cellular band) and radiated locally to nearby mobile devices.

296 citations

Journal ArticleDOI
TL;DR: This work investigates the possibility to focus synthetic aperture radar data relative to the same area, neglecting any mutual interaction between the targets, and assuming the propagation in homogeneous media, to achieve three-dimensional tomography reconstruction in presence of volumetric scattering in the elevation direction.
Abstract: Deals with the use of multipass synthetic aperture radar (SAR) data in order to achieve three-dimensional tomography reconstruction in presence of volumetric scattering. Starting from azimuth- and range-focused SAR data relative to the same area, neglecting any mutual interaction between the targets, and assuming the propagation in homogeneous media, we investigate the possibility to focus the data also in the elevation direction. The problem is formulated in the framework of linear inverse problem and the solution makes use of the singular value decomposition of the relevant operator. This allows us to properly take into account nonuniform orbit separation and to exploit a priori knowledge regarding the size of the volume interested by the scattering mechanism, thus leading to superresolution in the elevation direction. Results obtained on simulated data demonstrate the feasibility of the proposed processing technique.

294 citations