scispace - formally typeset
Search or ask a question
Author

Angelo Rosa

Bio: Angelo Rosa is an academic researcher from International School for Advanced Studies. The author has contributed to research in topics: Physics & Chromatin. The author has an hindex of 23, co-authored 69 publications receiving 2149 citations. Previous affiliations of Angelo Rosa include École Polytechnique Fédérale de Lausanne & École Normale Supérieure.


Papers
More filters
Journal ArticleDOI
TL;DR: Computer simulations are used to show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes.
Abstract: During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.

484 citations

Journal ArticleDOI
TL;DR: It is shown that melts of rings of total contour length Lr can be quantitatively mapped onto melts of interacting lattice trees with gyration radii R(g)(2)(Lr)⟩ ∝ L(r)(2ν) and ν = 0.32 ± 0.01.
Abstract: The conformational statistics of ring polymers in melts or dense solutions is strongly affected by their quenched microscopic topological state. The effect is particularly strong for nonconcatenated unknotted rings, which are known to crumple and segregate and which have been implicated as models for the generic behavior of interphase chromosomes. Here we use a computationally efficient multiscale approach to show that melts of rings of total contour length ${L}_{r}$ can be quantitatively mapped onto melts of interacting lattice trees with gyration radii $⟨{R}_{g}^{2}({L}_{r})⟩\ensuremath{\propto}{L}_{r}^{2\ensuremath{ u}}$ and $\ensuremath{ u}=0.32\ifmmode\pm\else\textpm\fi{}0.01$.

153 citations

Journal ArticleDOI
TL;DR: The results suggest that the adsorption process is akin to a geometric projection from 3D to 2D, known to preserve the scaling properties of fractal objects of dimension df<2.
Abstract: The scaling of the average gyration radius of polymers as a function of their length can be experimentally determined from ensemble measurements, such as light scattering, and agrees with analytical estimates. Ensemble techniques, yet, do not give access to the full probability distributions. Single molecule techniques, instead, can deliver information on both average quantities and distribution functions. Here we exploit the high resolution of atomic force microscopy over long DNA molecules adsorbed on a surface to measure the average end-to-end distance as a function of the DNA length, and its full distribution function. We find that all the scaling exponents are close to the predicted 3D values (upsilon=0.589+/-0.006 and delta=2.58+/-0.77). These results suggest that the adsorption process is akin to a geometric projection from 3D to 2D, known to preserve the scaling properties of fractal objects of dimension df<2.

152 citations

Journal ArticleDOI
TL;DR: An extended theoretical and computational framework is provided to explain the currently available experimental data for various species on the basis of a unique, minimal model of decondensing chromosomes: a kinkable, topologically constraint, semiflexible polymer with the (FISH) Kuhn length of l(K) = 300 nm, 10 kinks per Mbp, and a contact distance of 45 nm.

122 citations

Journal ArticleDOI
TL;DR: By using Brownian dynamics simulations on a coarse-grained polyelectrolyte model, it is shown that knots, despite being trapped at the pore entrance, do not per se cause the translocation process to jam and introduce an effective friction that increases with the applied force, and practically halts the translocations above a threshold force.
Abstract: The advent of solid state nanodevices allows for interrogating the physicochemical properties of a polyelectrolyte chain by electrophoretically driving it through a nanopore. Salient dynamical aspects of the translocation process have been recently characterized by theoretical and computational studies of model polymer chains free from self-entanglement. However, sufficiently long equilibrated chains are necessarily knotted. The impact of such topological "defects" on the translocation process is largely unexplored, and is addressed in this Letter. By using Brownian dynamics simulations on a coarse-grained polyelectrolyte model we show that knots, despite being trapped at the pore entrance, do not per se cause the translocation process to jam. Rather, knots introduce an effective friction that increases with the applied force, and practically halts the translocation above a threshold force. The predicted dynamical crossover, which is experimentally verifiable, ought to be relevant in applicative contexts, such as DNA nanopore sequencing.

98 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

01 May 2005

2,648 citations