scispace - formally typeset
Search or ask a question
Author

Angkoon Phinyomark

Bio: Angkoon Phinyomark is an academic researcher from University of New Brunswick. The author has contributed to research in topics: Feature extraction & Gesture recognition. The author has an hindex of 30, co-authored 96 publications receiving 4004 citations. Previous affiliations of Angkoon Phinyomark include University of Calgary & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this study, most complete and up-to-date thirty-seven time domain and frequency domain features have been proposed and it is indicated that most time domain features are superfluity and redundancy.
Abstract: Feature extraction is a significant method to extract the useful information which is hidden in surface electromyography (EMG) signal and to remove the unwanted part and interferences. To be successful in classification of the EMG signal, selection of a feature vector ought to be carefully considered. However, numerous studies of the EMG signal classification have used a feature set that have contained a number of redundant features. In this study, most complete and up-to-date thirty-seven time domain and frequency domain features have been proposed to be studied their properties. The results, which were verified by scatter plot of features, statistical analysis and classifier, indicated that most time domain features are superfluity and redundancy. They can be grouped according to mathematical property and information into four main types: energy and complexity, frequency, prediction model, and time-dependence. On the other hand, all frequency domain features are calculated based on statistical parameters of EMG power spectral density. Its performance in class separability viewpoint is not suitable for EMG recognition system. Recommendation of features to avoid the usage of redundant features for classifier in EMG signal classification applications is also proposed in this study.

1,151 citations

Journal ArticleDOI
TL;DR: This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21days, and shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier.
Abstract: In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there is a gap between the classification accuracy and the usability of practical applications of myoelectric control, especially the effect of long-term usage. This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21days. The most stable single feature and multiple feature sets are presented with the optimum configuration of myoelectric control, i.e. data segmentation and classifier. The result shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier. The averaged test classification accuracy is 93.37%, when trained in only initial first day. It brings only 2.45% decrease compared with retraining schemes. Increasing number of features to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square and waveform length, increase the classification accuracy to 98.87%. The proposed techniques achieve to maintain the high accuracy without the retraining scheme. Additionally, this continuous classification allows the real-time operation.

505 citations

Posted Content
TL;DR: The results demonstrate that MMNF can be used for new robust feature extraction and shows the better recognition result in noisy environment than other success feature candidates.
Abstract: Varieties of noises are major problem in recognition of Electromyography (EMG) signal. Hence, methods to remove noise become most significant in EMG signal analysis. White Gaussian noise (WGN) is used to represent interference in this paper. Generally, WGN is difficult to be removed using typical filtering and solutions to remove WGN are limited. In addition, noise removal is an important step before performing feature extraction, which is used in EMG-based recognition. This research is aimed to present a novel feature that tolerate with WGN. As a result, noise removal algorithm is not needed. Two novel mean and median frequencies (MMNF and MMDF) are presented for robust feature extraction. Sixteen existing features and two novelties are evaluated in a noisy environment. WGN with various signal-to-noise ratios (SNRs), i.e. 20-0 dB, was added to the original EMG signal. The results showed that MMNF performed very well especially in weak EMG signal compared with others. The error of MMNF in weak EMG signal with very high noise, 0 dB SNR, is about 5-10% and closed by MMDF and Histogram, whereas the error of other features is more than 20%. While in strong EMG signal, the error of MMNF is better than those from other features. Moreover, the combination of MMNF, Histrogram of EMG and Willison amplitude is used as feature vector in classification task. The experimental result shows the better recognition result in noisy environment than other success feature candidates. From the above results demonstrate that MMNF can be used for new robust feature extraction. Index Terms—Electromyography (EMG), Feature extraction, Pattern recognition, Robustness, Man-machine interfaces. —————————— a ——————————

278 citations

Book ChapterDOI
17 Oct 2012
TL;DR: Rich useful information can be obtained from the muscles and researchers can use such information in a wide class of clinical and engineering applications by measuring surface electromyography (EMG) signals, which can be computed in numerical form from a finite length time interval.
Abstract: Rich useful information can be obtained from the muscles and researchers can use such information in a wide class of clinical and engineering applications by measuring surface electromyography (EMG) signals (Merletti & Parker, 2004). Normally, EMG signals are acquired by surface electrodes that are placed on the skin superimposed on the targeted muscle. In order to use the EMG signal as a diagnosis signal or a control signal, a feature is often extracted before performing analysis or classification stage (Phinyomark et al., 2012a) because a lot of information, both useful information and noise (Phinyomark et al., 2012b), is contained in the raw EMG data. An EMG feature is a distinct characteristic of the signal that can be described or observed quantitatively, such as being large or small, spiky or smooth, and fast or slow. Generally, EMG features can be computed in numerical form from a finite length time interval and can change as a function of time, i.e. a voltage or a frequency. They can be computed in several domains, such as time domain, frequency domain, timefrequency and time-scale representations (Boostani & Moradi, 2003). However, frequencydomain features show the better performance than other-domain features in case of the assessing muscle fatigue (Al-Mulla et al., 2012). Mean frequency (MNF) and median frequency (MDF) are the most useful and popular frequency-domain features (Phinyomark et al., 2009) and frequently used for the assessment of muscle fatigue in surface EMG signals (Cifrek et al., 2009).

203 citations

Journal ArticleDOI
18 May 2018-Sensors
TL;DR: From these results, two new sets of recommended EMG features (along with a novel feature, L-scale) are identified that provide better performance for these emerging low-sampling rate systems.
Abstract: Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly ( p.

201 citations


Cited by
More filters
01 Jan 2016
TL;DR: Biomechanics and motor control of human movement is downloaded so that people can enjoy a good book with a cup of tea in the afternoon instead of juggling with some malicious virus inside their laptop.
Abstract: Thank you very much for downloading biomechanics and motor control of human movement. Maybe you have knowledge that, people have search hundreds times for their favorite books like this biomechanics and motor control of human movement, but end up in infectious downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they juggled with some malicious virus inside their laptop.

1,689 citations

Journal ArticleDOI
TL;DR: The analysis of time series: An Introduction, 4th edn. as discussed by the authors by C. Chatfield, C. Chapman and Hall, London, 1989. ISBN 0 412 31820 2.
Abstract: The Analysis of Time Series: An Introduction, 4th edn. By C. Chatfield. ISBN 0 412 31820 2. Chapman and Hall, London, 1989. 242 pp. £13.50.

1,583 citations

Journal ArticleDOI
TL;DR: In this study, most complete and up-to-date thirty-seven time domain and frequency domain features have been proposed and it is indicated that most time domain features are superfluity and redundancy.
Abstract: Feature extraction is a significant method to extract the useful information which is hidden in surface electromyography (EMG) signal and to remove the unwanted part and interferences. To be successful in classification of the EMG signal, selection of a feature vector ought to be carefully considered. However, numerous studies of the EMG signal classification have used a feature set that have contained a number of redundant features. In this study, most complete and up-to-date thirty-seven time domain and frequency domain features have been proposed to be studied their properties. The results, which were verified by scatter plot of features, statistical analysis and classifier, indicated that most time domain features are superfluity and redundancy. They can be grouped according to mathematical property and information into four main types: energy and complexity, frequency, prediction model, and time-dependence. On the other hand, all frequency domain features are calculated based on statistical parameters of EMG power spectral density. Its performance in class separability viewpoint is not suitable for EMG recognition system. Recommendation of features to avoid the usage of redundant features for classifier in EMG signal classification applications is also proposed in this study.

1,151 citations

Journal ArticleDOI
19 Feb 2014
TL;DR: The conclusion is that the gap between industry and academia is due to the relatively small functional improvement in daily situations that academic systems offer, despite the promising laboratory results, at the expense of a substantial reduction in robustness.
Abstract: Despite not recording directly from neural cells, the surface electromyogram (EMG) signal contains information on the neural drive to muscles, i.e., the spike trains of motor neurons. Using this property, myoelectric control consists of the recording of EMG signals for extracting control signals to command external devices, such as hand prostheses. In commercial control systems, the intensity of muscle activity is extracted from the EMG and used for single degrees of freedom activation (direct control). Over the past 60 years, academic research has progressed to more sophisticated approaches but, surprisingly, none of these academic achievements has been implemented in commercial systems so far. We provide an overview of both commercial and academic myoelectric control systems and we analyze their performance with respect to the characteristics of the ideal myocontroller. Classic and relatively novel academic methods are described, including techniques for simultaneous and proportional control of multiple degrees of freedom and the use of individual motor neuron spike trains for direct control. The conclusion is that the gap between industry and academia is due to the relatively small functional improvement in daily situations that academic systems offer, despite the promising laboratory results, at the expense of a substantial reduction in robustness. None of the systems so far proposed in the literature fulfills all the important criteria needed for widespread acceptance by the patients, i.e. intuitive, closed-loop, adaptive, and robust real-time ( 200 ms delay) control, minimal number of recording electrodes with low sensitivity to repositioning, minimal training, limited complexity and low consumption. Nonetheless, in recent years, important efforts have been invested in matching these criteria, with relevant steps forwards.

769 citations

Journal ArticleDOI
TL;DR: A complete overview of the emerging field of networks beyond pairwise interactions, and focuses on novel emergent phenomena characterizing landmark dynamical processes, such as diffusion, spreading, synchronization and games, when extended beyond Pairwise interactions.

740 citations