scispace - formally typeset
Search or ask a question
Author

Anil A. Kashale

Bio: Anil A. Kashale is an academic researcher from National Taitung University. The author has contributed to research in topics: Materials science & Supercapacitor. The author has an hindex of 12, co-authored 22 publications receiving 376 citations. Previous affiliations of Anil A. Kashale include Shivaji University & Dr. Babasaheb Ambedkar Marathwada University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple green and cost effective method is used for the synthesis of TiO2 nanoparticles, wherein remnant water (ideally kitchen waste) collected from soaked Bengal gram beans (Cicer arietinum L.) extract is reacted with TiCl4.
Abstract: Simple, green and cost effective method is used for the synthesis of TiO2 nanoparticles, wherein remnant water (ideally kitchen waste) collected from soaked Bengal gram beans (Cicer arietinum L.) extract is reacted with TiCl4. Biosynthesized TiO2 (Bio-TiO2) nanoparticles with uniform size distribution (free of aggregation even after calcination) were obtained as a result of the stabilizing molecules naturally present in the extract. The morphology, crystal structure and phase composition, specific surface area and pore size distribution of Bio-TiO2 were systematically investigated by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and BET surface area measurement system. Li-insertion properties were evaluated as anodes in the half-cell configuration (Li/Bio-TiO2) and it is found to demonstrate reversible insertion of 0.61 mol at a current density of 33 mA g−1. The half-cell displayed a good cyclability and retained 98% of its initial reversible capacity even after 60 galvanostatic cycles.

95 citations

Journal ArticleDOI
05 Jul 2021
TL;DR: Carbon quantum dots (CQDs) have the desirable advantages of low toxicity, environmental friendliness, low cost, photostability, favorable charge transfer with enhanced electronic conductivity, and comparable easy-synthesis protocols.
Abstract: Carbon quantum dots (CQDs) are a class of carbon nanomaterials that have recently gained recognition as current entrants to traditional semiconductor quantum dots. CQDs have the desirable advantages of low toxicity, environmental friendliness, low cost, photostability, favorable charge transfer with enhanced electronic conductivity, and comparable easy-synthesis protocols. This review examines the advancements in CQD research and development, with a focus on their synthesis, functionalization, and energy applications. Initially, various synthesis methods are discussed briefly with pros and cons. Herein, first top-down methods including the arc-discharge technique, laser ablation technique, plasma treatment, ultrasound synthesis technique, electrochemical technique, chemical exfoliation, and combustion were discussed briefly. The later section presents bottom-up (microwave synthesis, hydrothermal synthesis, thermal pyrolysis, and metal–organic framework template-assisted approach) and waste-derived CQD synthesis methods. The next section is focused on the energy applications of CQDs including supercapacitors, lithium-ion batteries, photovoltaics, hydrogen evolution reaction and oxygen evolution reaction. Finally, challenges and future perspectives in this exciting and promising area are presented.

93 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and optical properties of Ni-doped SnO2 nanostructures were studied using various techniques such as UV/visible spectroscopy, FT-IR, X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscope (TEM) images and the XRD results of the biosynthesized Ni-snO2 nanoparticles reveal a uniform size distribution with an average size of 6 nm and confirmed the formation of a rutile structure with the space
Abstract: Considering the potential applications of transition metal doped nanostructured materials and the advantages of novel, cost-effective and environmentally friendly biosynthesis methods, Ni-doped SnO2 nanomaterials have been synthesized using remnant water (ideally kitchen waste) collected from soaked Bengal gram bean (Cicer arietinum L.) extract. The structural and optical properties of the Ni-doped SnO2 nanostructures were studied using various techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The SEM and TEM images and the XRD results of the biosynthesized Ni–SnO2 nanoparticles reveal a uniform size distribution with an average size of 6 nm and confirmed the formation of a rutile structure with the space group (P42/mnm) and the nanocrystalline nature of the products with a spherical morphology. Subsequently, Ni-doped biosynthesized SnO2 nanoparticles were coated onto a glass substrate using the doctor blade method to form thin films. The NO2 sensing properties of the materials have been studied in comparison with other gases. The reported gas sensing results are promising, which suggest that the Ni-dopant is a promising noble metal additive to fabricate low cost SnO2 based sensors.

78 citations

Journal ArticleDOI
TL;DR: A facile, scalable, economic and binder free reflux condensation mediated deposition strategy is reported for the direct growth of cobalt oxide (Co3O4) nanosheets (positive electrode) and zinc ferrite (ZnFe2O4), nanoflakes (negative electrode) on a highly conducting flexible stainless steel mesh (SSM, 300 mesh) for the first time as mentioned in this paper.

52 citations

Journal ArticleDOI
20 Oct 2020
TL;DR: In this article, two-dimensional (2D), free-standing, non-precious, and robust electrocatalysts for oxygen evolution reactions (OERs) are proposed.
Abstract: Constructing two-dimensional (2D), free-standing, nonprecious, and robust electrocatalysts for oxygen evolution reactions (OERs) is of primary importance in the commercial water-splitting technolog...

41 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, a symmetric supercapacitor based on Nanoporous Carbon (NPC) was designed by direct carbonization of Zn-based metal-organic frameworks (MOFs) without using an additional precursor.
Abstract: Nanoporous carbon (NPC) materials with high specific surface area have attracted considerable attention for electrochemical energy storage applications. In the present work, we have designed novel symmetric supercapacitors based on NPC by direct carbonization of Zn-based metal-organic frameworks (MOFs) without using an additional precursor. By controlling the reaction conditions in the present study, we synthesized NPC with two different particle sizes. The effects of particle size and mass loadings on supercapacitor performance have been carefully evaluated. Our NPC materials exhibit excellent electrochemical performance with a maximum specific capacitance of 251 F g-1 in 1 M H2SO4 electrolyte. The symmetric supercapacitor studies show that these efficient electrodes have good capacitance, high stability, and good rate capability.

365 citations

Journal ArticleDOI
TL;DR: In this article, a zwitterionic compound, 3-(1-pyridinio)-1-propanesulfonate, is used to modify the SnO2 ETL.
Abstract: We report a highly effective interface engineering strategy for thermally stable perovskite solar cells (PSCs) by employing a zwitterion-modified SnO2 electron transport layer (ETL) and a dopant-free hole transport layer (HTL). A zwitterionic compound, 3-(1-pyridinio)-1-propanesulfonate, is used to modify the SnO2 ETL. The zwitterion, which forms interfacial dipoles, plays a few important roles: (1) it causes shifts in the work function of SnO2 resulting in more efficient charge extraction and an increase in the built-in potential. (2) It pulls electrons from perovskite layers to the ETL/perovskite interface, enhancing the electron transport ability. (3) Interfacial dipoles prevent back transfer of electrons from the ETL to the perovskite and suppress charge recombination. (4) Positively charged atoms in the zwitterion passivate Pb–I antisite defects, improving the stability of devices. With these desirable properties, the PSC with doped Spiro-OMeTAD obtained a power conversion efficiency of 21.43%. In addition, the PSC with the dopant-free HTL exhibited a record high efficiency of 20.5% among dopant-free polymeric HTLs using green solvents. The resulting PSCs without encapsulation showed excellent thermal stability. Accordingly, this work suggests that the use of a modified ETL and a dopant-free HTL is a promising strategy to overcome the thermal instability of planar-PSCs (P-PSCs).

299 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the latest contributions and progress in aqueous/non-aqueous faradaic electrode materials including conductive polymers and/or transition metal oxides/sulfides/nitrides/carbides, the operating principles, system design/engineering, and rational optimization of all-pseudocapacitive ASCs.
Abstract: Recently, asymmetric supercapacitors (ASCs) have attracted extensive research interest worldwide for their potential application in emerging energy-related fields. The smart integration of high overall cell operating voltage and large capacitance can be realized in all-pseudocapacitive-electrode-materials-based ASCs. This innovative all-pseudocapacitive-asymmetric design provides a fascinating way to obtain high-energy-density devices with high power rates and also holds huge potential to bridge the gap between dielectric capacitors and rechargeable batteries. In the present review, we mainly summarized the latest contributions and progress in aqueous/non-aqueous faradaic electrode materials including conductive polymers and/or transition metal oxides/sulfides/nitrides/carbides, the operating principles, system design/engineering, and the rational optimization of all-pseudocapacitive ASCs. The intrinsic advantages and disadvantages of these unique ASCs have been elaborately discussed and comparatively evaluated. Finally, some future trends, prospects, and challenges, especially in rate capability and cycling stability, have been presented for advanced next-generation ASCs.

258 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the performance of spinel ferrites, perovskite oxides, transition metals sulfides, carbon materials, and conducting polymers for supercapacitors.
Abstract: Supercapacitors are increasingly used for energy conversion and storage systems in sustainable nanotechnologies. Graphite is a conventional electrode utilized in Li-ion-based batteries, yet its specific capacitance of 372 mA h g−1 is not adequate for supercapacitor applications. Interest in supercapacitors is due to their high-energy capacity, storage for a shorter period and longer lifetime. This review compares the following materials used to fabricate supercapacitors: spinel ferrites, e.g., MFe2O4, MMoO4 and MCo2O4 where M denotes a transition metal ion; perovskite oxides; transition metals sulfides; carbon materials; and conducting polymers. The application window of perovskite can be controlled by cations in sublattice sites. Cations increase the specific capacitance because cations possess large orbital valence electrons which grow the oxygen vacancies. Electrodes made of transition metal sulfides, e.g., ZnCo2S4, display a high specific capacitance of 1269 F g−1, which is four times higher than those of transition metals oxides, e.g., Zn–Co ferrite, of 296 F g−1. This is explained by the low charge-transfer resistance and the high ion diffusion rate of transition metals sulfides. Composites made of magnetic oxides or transition metal sulfides with conducting polymers or carbon materials have the highest capacitance activity and cyclic stability. This is attributed to oxygen and sulfur active sites which foster electrolyte penetration during cycling, and, in turn, create new active sites.

204 citations

Journal ArticleDOI
TL;DR: In this paper, a review of 2D spinel structured Co-based materials and their composites for supercapacitors is presented, where the future challenges and outlooks of two-dimensional spinel-structured co-based material in energy storage devices are discussed.

199 citations