scispace - formally typeset
Search or ask a question
Author

Anind K. Dey

Bio: Anind K. Dey is an academic researcher from University of Washington. The author has contributed to research in topics: Ubiquitous computing & Context (language use). The author has an hindex of 70, co-authored 348 publications receiving 35528 citations. Previous affiliations of Anind K. Dey include Georgia Institute of Technology & Carnegie Mellon University.


Papers
More filters
Journal ArticleDOI
02 Jan 2001
TL;DR: An operational definition of context is provided and the different ways in which context can be used by context-aware applications are discussed, including the features and abstractions in the toolkit that make the task of building applications easier.
Abstract: Context is a poorly used source of information in our computing environments. As a result, we have an impoverished understanding of what context is and how it can be used. In this paper, we provide an operational definition of context and discuss the different ways in which context can be used by context-aware applications. We also present the Context Toolkit, an architecture that supports the building of these context-aware applications. We discuss the features and abstractions in the toolkit that make the task of building applications easier. Finally, we introduce a new abstraction, a situation which we believe will provide additional support to application designers.

5,083 citations

Proceedings ArticleDOI
27 Sep 1999
TL;DR: Some of the research challenges in understanding context and in developing context-aware applications are discussed, which are increasingly important in the fields of handheld and ubiquitous computing, where the user?s context is changing rapidly.
Abstract: When humans talk with humans, they are able to use implicit situational information, or context, to increase the conversational bandwidth. Unfortunately, this ability to convey ideas does not transfer well to humans interacting with computers. In traditional interactive computing, users have an impoverished mechanism for providing input to computers. By improving the computer’s access to context, we increase the richness of communication in human-computer interaction and make it possible to produce more useful computational services. The use of context is increasingly important in the fields of handheld and ubiquitous computing, where the user?s context is changing rapidly. In this panel, we want to discuss some of the research challenges in understanding context and in developing context-aware applications.

4,842 citations

Journal ArticleDOI
TL;DR: A conceptual framework is presented that separates the acquisition and representation of context from the delivery and reaction to context by a context-aware application, and a toolkit is built that instantiates this conceptual framework and supports the rapid development of a rich space of context- aware applications.
Abstract: Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is accelerating. One challenge that remains in this emerging research field is the ability to enhance the behavior of any application by informing it of the context of its use. By context, we refer to any information that characterizes a situation related to the interaction between humans, applications, and the surrounding environment. Context-aware applications promise richer and easier interaction, but the current state of research in this field is still far removed from that vision. This is due to 3 main problems: (a) the notion of context is still ill defined, (b) there is a lack of conceptual models and methods to help drive the design of context-aware applications, and (c) no tools are available to jump-start the development of context-aware applications. In this anchor article, we address these 3 problems in turn. We first define context, identify categories of contextual information, and characterize context-aware application behavior. Though the full impact of context-aware computing requires understanding very subtle and high-level notions of context, we are focusing our efforts on the pieces of context that can be inferred automatically from sensors in a physical environment. We then present a conceptual framework that separates the acquisition and representation of context from the delivery and reaction to context by a context-aware application. We have built a toolkit, the Context Toolkit, that instantiates this conceptual framework and supports the rapid development of a rich space of context-aware applications. We illustrate the usefulness of the conceptual framework by describing a number of context-aware applications that have been prototyped using the Context Toolkit. We also demonstrate how such a framework can support the investigation of important research challenges in the area of context-aware computing.

3,095 citations

Proceedings Article
13 Jul 2008
TL;DR: A probabilistic approach based on the principle of maximum entropy that provides a well-defined, globally normalized distribution over decision sequences, while providing the same performance guarantees as existing methods is developed.
Abstract: Recent research has shown the benefit of framing problems of imitation learning as solutions to Markov Decision Problems. This approach reduces learning to the problem of recovering a utility function that makes the behavior induced by a near-optimal policy closely mimic demonstrated behavior. In this work, we develop a probabilistic approach based on the principle of maximum entropy. Our approach provides a well-defined, globally normalized distribution over decision sequences, while providing the same performance guarantees as existing methods. We develop our technique in the context of modeling real-world navigation and driving behaviors where collected data is inherently noisy and imperfect. Our probabilistic approach enables modeling of route preferences as well as a powerful new approach to inferring destinations and routes based on partial trajectories.

2,479 citations

Proceedings ArticleDOI
01 May 1999
TL;DR: This work introduces the concept of context widgets that mediate betweent the environment and the application in the same way graphicalwidgets mediate between the user and the applications.
Abstract: Context-enabled applications are just emerging and promise richer interaction by taking environmental context into account. However, they are difficult to build due to their distributed nature and the use of unconventional sensors. The concepts of toolkits and widget libraries in graphical user interfaces has been tremendously successtil, allowing programmers to leverage off existing building blocks to build interactive systems more easily. We introduce the concept of context widgets that mediate between the environment and the application in the same way graphical widgets mediate between the user and the application. We illustrate the concept of context widgets with the beginnings of a widget library we have developed for sensing presence, identity and activity of people and things. We assess the success of our approach with two example context-enabled applications we have built and an existing application to which we have added context-sensing capabilities.

1,337 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Reading a book as this basics of qualitative research grounded theory procedures and techniques and other references can enrich your life quality.

13,415 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
02 Jan 2001
TL;DR: An operational definition of context is provided and the different ways in which context can be used by context-aware applications are discussed, including the features and abstractions in the toolkit that make the task of building applications easier.
Abstract: Context is a poorly used source of information in our computing environments. As a result, we have an impoverished understanding of what context is and how it can be used. In this paper, we provide an operational definition of context and discuss the different ways in which context can be used by context-aware applications. We also present the Context Toolkit, an architecture that supports the building of these context-aware applications. We discuss the features and abstractions in the toolkit that make the task of building applications easier. Finally, we introduce a new abstraction, a situation which we believe will provide additional support to application designers.

5,083 citations