scispace - formally typeset
Search or ask a question
Author

Anindya Das

Other affiliations: Weizmann Institute of Science
Bio: Anindya Das is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Graphene & Bilayer graphene. The author has an hindex of 20, co-authored 59 publications receiving 6759 citations. Previous affiliations of Anindya Das include Weizmann Institute of Science.


Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates a top-gated graphene transistor that is able to reach doping levels of up to 5x1013 cm-2, which is much higher than those previously reported.
Abstract: The recent discovery of graphene has led to many advances in two-dimensional physics and devices. The graphene devices fabricated so far have relied on $SiO_2$ back gating. Electrochemical top gating is widely used for polymer transistors, and has also been successfully applied to carbon nanotubes. Here we demonstrate a top-gated graphene transistor that is able to reach doping levels of up to $5\times 10^{13} cm^{-2}$, which is much higher than those previously reported. Such high doping levels are possible because the nanometre-thick Debye layer in the solid polymer electrolyte gate provides a much higher gate capacitance than the commonly used $SiO_2$ back gate, which is usually about 300 nm thick. In situ Raman measurements monitor the doping. The G peak stiffens and sharpens for both electron and hole doping, but the 2D peak shows a different response to holes and electrons. The ratio of the intensities of the G and 2D peaks shows a strong dependence on doping, making it a sensitive parameter to monitor the doping.

3,254 citations

Journal ArticleDOI
TL;DR: In this paper, the existence of Majorana fermions in the one-dimensional topological superconductor induced by placing an aluminium super-conductor close to an indium-arsenide nanowire was shown.
Abstract: New data, backed up by simulations, support the existence of Majorana fermions in the one-dimensional topological superconductor that is induced by placing an aluminium superconductor close to an indium-arsenide nanowire.

1,611 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show the evolution of Raman spectra with a number of graphene layers on different substrates, $SiO_2/Si$ and conducting indium tin oxide (ITO) plate.
Abstract: We show the evolution of Raman spectra with a number of graphene layers on different substrates, $SiO_2/Si$ and conducting indium tin oxide (ITO) plate. The G mode peak position and the intensity ratio of G and 2D bands depend on the preparation of sample for the same number of graphene layers. The 2D Raman band has characteristic line shapes in single and bilayer graphene, capturing the differences in their electronic structure. The defects have a significant influence on the G band peak position for the single layer graphene: the frequency shows a blue shift up to $12 cm^{-1}$ depending on the intensity of the D Raman band, which is a marker of the defect density. Most surprisingly, Raman spectra of graphene on the conducting ITO plates show a lowering of the G mode frequency by $\sim 6cm^{-1}$ and the 2D band frequency by $\sim 20cm^{-1}$. This red-shift of the G and 2D bands is observed for the first time in single layer graphene.

547 citations

Journal ArticleDOI
TL;DR: The magnitudes of the interaction energies of the nucleobases with graphene are similar to those found with single-walled carbon nanotubes.
Abstract: Interaction of two different samples of graphene with DNA nucleobases and nucleosides is investigated by isothermal titration calorimetry. The relative interaction energies of the nucleobases decrease in the order guanine (G) > adenine (A) > cytosine (C) > thy mine (T) in aqueous solutions, although the positions of C and T seem to be interchangeable. The same trend is found with the nucleosides. Interaction energies of the A-T and G-C pairs are somewhere between those of the constituent bases. Theoretical calculations including van der Wools interaction and solvation energies give the trend G > A similar to T > C. The magnitudes of the interaction energies of the nucleobases with graphene are similar to those found with single-walled carbon nonotubes.

478 citations

Journal ArticleDOI
TL;DR: In this paper, phonon renormalization in bilayer graphene as a function of doping was reported, showing that the Raman G peak stiffens and sharpens for both electron and hole doping as a result of the nonadiabatic Kohn anomaly at the Gamma point.
Abstract: We report phonon renormalization in bilayer graphene as a function of doping. The Raman G peak stiffens and sharpens for both electron and hole doping as a result of the nonadiabatic Kohn anomaly at the Gamma point. The bilayer has two conduction and valence subbands, with splitting dependent on the interlayer coupling. This gives a change of slope in the variation of G peak position with doping which allows a direct measurement of the interlayer coupling strength.

261 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
05 Jun 2009-Science
TL;DR: It is shown that graphene grows in a self-limiting way on copper films as large-area sheets (one square centimeter) from methane through a chemical vapor deposition process, and graphene film transfer processes to arbitrary substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.
Abstract: Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single-layer graphene, with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on silicon/silicon dioxide substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.

10,663 citations

Journal ArticleDOI
TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Abstract: The chemistry of graphene oxide is discussed in this critical review Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references)

10,126 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations