scispace - formally typeset
Search or ask a question
Author

Anirban Bhattacharya

Bio: Anirban Bhattacharya is an academic researcher from Indian Institute of Technology Patna. The author has contributed to research in topics: Welding & Ultimate tensile strength. The author has an hindex of 21, co-authored 91 publications receiving 1560 citations. Previous affiliations of Anirban Bhattacharya include Indian Institute of Technology Kanpur & Thapar University.


Papers
More filters
Journal ArticleDOI
TL;DR: An experimental study to investigate the effects of cutting parameters on finish and power consumption by employing Taguchi techniques found a significant effect of cutting speed on the surface roughness andPower consumption, while the other parameters did not substantially affect the responses.
Abstract: The present paper outlines an experimental study to investigate the effects of cutting parameters on finish and power consumption by employing Taguchi techniques. The high speed machining of AISI 1045 using coated carbide tools was investigated. A combined technique using orthogonal array and analysis of variance was employed to investigate the contribution and effects of cutting speed, feed rate and depth of cut on three surface roughness parameters and power consumption. The results showed a significant effect of cutting speed on the surface roughness and power consumption, while the other parameters did not substantially affect the responses. Thereafter, optimal cutting parameters were obtained.

180 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of part deposition orientation on surface finish and dimensional accuracy of FDM parts is studied and the part selected for this study is designed in such a way that different primitive geometric features at different directions are present.
Abstract: Fused deposition modeling (FDM) process is an additive manufacturing technology where objects are manufactured in layers. In the present days, FDM is commercially used to build prototypes, functional components; however, these parts majorly suffer from poor surface quality and dimensional accuracy even for basic part geometries. In the present paper, first the effect of part deposition orientation on surface finish and dimensional accuracy of FDM parts are studied. The part selected for this study is designed in such a way that different primitive geometric features at different directions are present. The parts are built at different orientations (0°, 15°, 30°, 45°, 60°, 75°, 90°) using acrylonitrile butadiene styrene P430 material, and surface finish and dimensional accuracy are measured at different surfaces. Next, the FDM parts are postprocessed by cold vapor treatment of dimethylketone (acetone) and improvement in surface finish and change in dimensional accuracy are investigated. The results show th...

178 citations

Journal ArticleDOI
TL;DR: In this paper, the simultaneous effect of part building orientation (along the X, Y, and Z axis) and raster angle (0°, 30°, 60°, and 90°) on surface roughness, tensile strength, flexural strength, consumption of model, support material, and building time of acrylonitrile butadiene styrene (ABS) test specimens fabricated by FDM process was investigated.
Abstract: The present study investigates the simultaneous effect of part building orientation (along the X, Y, and Z axis) and raster angle (0°, 30°, 60°, and 90°) on surface roughness, tensile strength, flexural strength, consumption of model, support material, and building time of acrylonitrile butadiene styrene (ABS) test specimens fabricated by fused deposition modeling (FDM) process. Mechanical properties and surface roughness show a strong anisotropic behavior for the parts. For parts built with the X or Y orientations and 30° or 60° raster angle, pulling of fiber and a small amount of necking along with tearing are observed, which are responsible for higher strength. Post-built treatment of the parts with cold vapors of dimethyl ketone resulted in an immense improvement in surface finish. Exposing the parts in cold vapors turns the surfaces to a soft/mushy-like state due to the weakening of the secondary bonds, and the minor flow of polymer layers fills the cavity region between the adjacent layers and helps in improving the surface finish after the treatment.

118 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental study is carried out to study the effect of incremental sheet metal forming process variables on maximum formable angle and surface finish, and the results indicate that formability in incremental forming decreases with increase in tool diameter.
Abstract: Incremental sheet metal forming (ISMF) has demonstrated its great potential to form complex three-dimensional parts without using a component specific tooling. The die-less nature in incremental forming provides a competitive alternative for economically and effectively fabricating low-volume functional sheet parts. However, ISMF has limitations with respect to maximum formable wall angle, geometrical accuracy and surface finish of the component. In the present work, an experimental study is carried out to study the effect of incremental sheet metal forming process variables on maximum formable angle and surface finish. Box-Behnken method is used to design the experiments for formability study and full factorial method is used for surface finish study. Analysis of experimental results indicates that formability in incremental forming decreases with increase in tool diameter. Formable angle first increases and then decreases with incremental depth and it is also observed that the variation in the formable angle is not significant in the range of incremental depths considered to produce good surface finishes during the present study. A simple analysis model is used to estimate the stress values during incremental sheet metal forming assuming that the deformation occurs predominantly under plane strain condition. A stress based criterion is used along with the above mentioned analysis to predict the formability in ISMF and its predictions are in very good agreement with the experimental results. Surface roughness decreases with increase in tool diameter for all incremental depths. Surface roughness increases first with increase in incremental depth up to certain angle and then decreases. Surface roughness value decreases with increase in wall angle.Copyright © 2011 by ASME

104 citations

Journal ArticleDOI
TL;DR: In this paper, the deformation behavior of the FDM samples in general and individual rasters of different thicknesses (layer thickness), in particular, laid at different directions under uniaxial tension is revealed.

104 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the L9 orthogonal array in a CNC turning machine to optimize turning parameters based on the Taguchi method to minimize surface roughness (Ra and Rz).

408 citations

Journal ArticleDOI
02 Jan 2017
TL;DR: This paper provides an overview on the main additive manufacturing/3D printing technologies suitable for many satellite applications and, in particular, radio-frequency components.
Abstract: This paper provides an overview on the main additive manufacturing/3D printing technologies suitable for many satellite applications and, in particular, radio-frequency components. In fact, nowadays they have become capable of producing complex net-shaped or nearly net-shaped parts in materials that can be directly used as functional parts, including polymers, metals, ceramics, and composites. These technologies represent the solution for low-volume, high-value, and highly complex parts and products.

399 citations

Journal ArticleDOI
TL;DR: In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described and a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.
Abstract: Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.

357 citations

Journal ArticleDOI
10 Jul 2020-Polymers
TL;DR: The most common defects on printed parts, in particular the void formation, surface roughness and poor bonding between fibre and matrix, are explored and an inclusive discussion on the effectiveness of chemical, laser, heat and ultrasound treatments to minimize these drawbacks is provided.
Abstract: Fused deposition modelling (FDM) is one of the fastest-growing additive manufacturing methods used in printing fibre-reinforced composites (FRC). The performances of the resulting printed parts are limited compared to those by other manufacturing methods due to their inherent defects. Hence, the effort to develop treatment methods to overcome these drawbacks has accelerated during the past few years. The main focus of this study is to review the impact of those defects on the mechanical performance of FRC and therefore to discuss the available treatment methods to eliminate or minimize them in order to enhance the functional properties of the printed parts. As FRC is a combination of polymer matrix material and continuous or short reinforcing fibres, this review will thoroughly discuss both thermoplastic polymers and FRCs printed via FDM technology, including the effect of printing parameters such as layer thickness, infill pattern, raster angle and fibre orientation. The most common defects on printed parts, in particular, the void formation, surface roughness and poor bonding between fibre and matrix, are explored. An inclusive discussion on the effectiveness of chemical, laser, heat and ultrasound treatments to minimize these drawbacks is provided by this review.

355 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe how parts manufactured by FDM, with different part orientations and raster angles, were examined experimentally and evaluated to achieve the desired properties of the parts while shortening the manufacturing times due to maintenance costs.
Abstract: Purpose – The mechanical properties and surface finish of functional parts are important consideration in rapid prototyping, and the selection of proper parameters is essential to improve manufacturing solutions. The purpose of this paper is to describe how parts manufactured by fused deposition modelling (FDM), with different part orientations and raster angles, were examined experimentally and evaluated to achieve the desired properties of the parts while shortening the manufacturing times due to maintenance costs. Design/methodology/approach – For this purpose, five different raster angles (0°, 30°, 45°, 60° and 90°) for three part orientations (horizontal, vertical and perpendicular) have been manufactured by the FDM method and tested for surface roughness, tensile strength and flexural strength. Also, behaviour of the mechanical properties was clarified with scanning electron microscopy images of fracture surfaces. Findings – The research results suggest that the orientation has a more significant in...

351 citations