scispace - formally typeset
Search or ask a question
Author

Anish Khan

Bio: Anish Khan is an academic researcher from King Abdulaziz University. The author has contributed to research in topics: Materials science & Nanocomposite. The author has an hindex of 29, co-authored 291 publications receiving 3291 citations. Previous affiliations of Anish Khan include Spanish National Research Council & Universiti Sains Malaysia.


Papers
More filters
Journal ArticleDOI
TL;DR: A detailed review of the different types of retting processes, chemical and surface treatments and characterization techniques for natural fibers, and major findings from the literature are summarized.

534 citations

Journal ArticleDOI
TL;DR: The test results conclude that there was an increase in cellulose content with a reduction in hemicellulose, lignin, and wax upon alkali treatment which enhanced the thermal stability, tensile strength, crystallinity, and surface roughness characteristics.

255 citations

Journal ArticleDOI
TL;DR: The results of scanning electron microscopic and atomic force microscopic analysis exhibited that impurities and wax on the outer surface of the ARBFs were removed after the alkali treatment, concluding that ARBF's is the appropriate material to use as a reinforcement in fibre reinforced plastics.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the benefits of using Agave Americana C. plant as potential reinforcement in polymeric composites were analyzed using FT-IR technique to understand the character of molecular bonds, crystallinity and their correlations with various bonds in fiber structure.

134 citations

Journal ArticleDOI
30 Apr 2007-Talanta
TL;DR: An organic-inorganic hybrid poly-o-toluidine Th(IV) phosphate was chemically synthesized and a cation-exchanger ion-selective membrane electrode was fabricated for the determination of Hg(II) ions in solutions to understand the ion-exchange capabilities.

114 citations


Cited by
More filters
Book
01 Jan 1971
TL;DR: In this paper, Ozaki et al. describe the dynamics of adsorption and Oxidation of organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water.
Abstract: 1: Magnetic Particles: Preparation, Properties and Applications: M. Ozaki. 2: Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material C.J. Serna, M.P. Morales. 3: Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water M.A. Blesa, R.J. Candal, S.A. Bilmes. 4: Colloidal Aggregation in Two-Dimensions A. Moncho-Jorda, F. Martinez-Lopez, M.A. Cabrerizo-Vilchez, R. Hidalgo Alvarez, M. Quesada-PMerez. 5: Kinetics of Particle and Protein Adsorption Z. Adamczyk.

1,870 citations

Journal ArticleDOI
TL;DR: This review extensively discusses the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral,Anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti- cancer activity of Ag NPs.
Abstract: Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.

1,720 citations

Journal Article
TL;DR: In this paper, the authors presented a method to detect the presence of a tumor in the human brain using EPFL-206025 data set, which was created on 2015-03-03, modified on 2017-05-12
Abstract: Note: Times Cited: 875 Reference EPFL-ARTICLE-206025doi:10.1021/cr0501846View record in Web of Science URL: ://WOS:000249839900009 Record created on 2015-03-03, modified on 2017-05-12

1,704 citations

Journal ArticleDOI
TL;DR: In this paper, an ultrathin 2D/2D WO3/g-C3N4 step-like composite composite heterojunction photocatalysts were fabricated by electrostatic self-assembly of ultra-thin tungsten trioxide (WO3) and graphitic carbon nitride (g)-nodes.
Abstract: The appropriate interfacial contact of heterojunction photocatalysts plays a critical role in transfer/separation of interfacial charge carriers. Design of two-dimensional (2D)/2D surface-to-surface heterojunction is an effective method for improving photocatalytic activity since greater contact area can enhance interfacial charge transfer rate. Herein, ultrathin 2D/2D WO3/g-C3N4 step-like composite heterojunction photocatalysts were fabricated by electrostatic self-assembly of ultrathin tungsten trioxide (WO3) and graphitic carbon nitride (g-C3N4) nanosheets. The ultrathin WO3 and g-C3N4 nanosheets were obtained by electrostatic-assisted ultrasonic exfoliation of bulk WO3 and a two-step thermal-etching of bulk g-C3N4, respectively. The thickness of ultrathin WO3 and g-C3N4 nanosheets are 2.5–3.5 nm, which is equivalent to 5–8 atomic or molecular layer thickness. This ultrathin layered heterojunction structure can enhance surface photocatalytic rate because photogenerated electrons and holes at heterogeneous interface more easily transfer to surface of photocatalysts. Therefore, the obtained ultrathin 2D/2D WO3/g-C3N4 step-scheme (S-scheme) heterojunction photocatalysts exhibited better H2-production activity than pure g-C3N4 and WO3 with the same loading amount of Pt as cocatalyst. The mechanism and driving force of charge transfer and separation in S-scheme heterojunction photocatalysts are investigated and discussed. This investigation will provide new insight about designing and constructing novel S-scheme heterojunction photocatalysts.

1,440 citations

Journal ArticleDOI
TL;DR: Recently, carbonaceous nanofillers such as graphene and carbon nanotubes (CNTs) play a promising role due to their better structural, functional properties and broad range of applications in every field as mentioned in this paper.

1,097 citations