scispace - formally typeset
Search or ask a question
Author

Anit Kumar Sahu

Bio: Anit Kumar Sahu is an academic researcher from Bosch. The author has contributed to research in topics: Computer science & Independent and identically distributed random variables. The author has an hindex of 17, co-authored 55 publications receiving 2353 citations. Previous affiliations of Anit Kumar Sahu include Carnegie Mellon University & Tufts University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the unique characteristics and challenges of federated learning, provide a broad overview of current approaches, and outline several directions of future work that are relevant to a wide range of research communities.
Abstract: Federated learning involves training statistical models over remote devices or siloed data centers, such as mobile phones or hospitals, while keeping data localized. Training in heterogeneous and potentially massive networks introduces novel challenges that require a fundamental departure from standard approaches for large-scale machine learning, distributed optimization, and privacy-preserving data analysis. In this article, we discuss the unique characteristics and challenges of federated learning, provide a broad overview of current approaches, and outline several directions of future work that are relevant to a wide range of research communities.

2,163 citations

15 Mar 2020
TL;DR: This work introduces a framework, FedProx, to tackle heterogeneity in federated networks, and provides convergence guarantees for this framework when learning over data from non-identical distributions (statistical heterogeneity), and while adhering to device-level systems constraints by allowing each participating device to perform a variable amount of work.
Abstract: Federated Learning is a distributed learning paradigm with two key challenges that differentiate it from traditional distributed optimization: (1) significant variability in terms of the systems characteristics on each device in the network (systems heterogeneity), and (2) non-identically distributed data across the network (statistical heterogeneity). In this work, we introduce a framework, FedProx, to tackle heterogeneity in federated networks. FedProx can be viewed as a generalization and re-parametrization of FedAvg, the current state-of-the-art method for federated learning. While this re-parameterization makes only minor modifications to the method itself, these modifications have important ramifications both in theory and in practice. Theoretically, we provide convergence guarantees for our framework when learning over data from non-identical distributions (statistical heterogeneity), and while adhering to device-level systems constraints by allowing each participating device to perform a variable amount of work (systems heterogeneity). Practically, we demonstrate that FedProx allows for more robust convergence than FedAvg across a suite of realistic federated datasets. In particular, in highly heterogeneous settings, FedProx demonstrates significantly more stable and accurate convergence behavior relative to FedAvg---improving absolute test accuracy by 22% on average.

1,490 citations

Posted Content
TL;DR: FedProx as discussed by the authors is a generalization and re-parametrization of FedAvg, which is the state-of-the-art method for federated learning.
Abstract: Federated Learning is a distributed learning paradigm with two key challenges that differentiate it from traditional distributed optimization: (1) significant variability in terms of the systems characteristics on each device in the network (systems heterogeneity), and (2) non-identically distributed data across the network (statistical heterogeneity). In this work, we introduce a framework, FedProx, to tackle heterogeneity in federated networks. FedProx can be viewed as a generalization and re-parametrization of FedAvg, the current state-of-the-art method for federated learning. While this re-parameterization makes only minor modifications to the method itself, these modifications have important ramifications both in theory and in practice. Theoretically, we provide convergence guarantees for our framework when learning over data from non-identical distributions (statistical heterogeneity), and while adhering to device-level systems constraints by allowing each participating device to perform a variable amount of work (systems heterogeneity). Practically, we demonstrate that FedProx allows for more robust convergence than FedAvg across a suite of realistic federated datasets. In particular, in highly heterogeneous settings, FedProx demonstrates significantly more stable and accurate convergence behavior relative to FedAvg---improving absolute test accuracy by 22% on average.

490 citations

Posted Content
14 Dec 2018
TL;DR: This work proposes and introduces \fedprox, which is similar in spirit to \fedavg, but more amenable to theoretical analysis, and describes the convergence of \fed Prox under a novel \textit{device similarity} assumption.
Abstract: Federated Learning is a distributed learning paradigm with two key challenges that differentiate it from traditional distributed optimization: (1) significant variability in terms of the systems characteristics on each device in the network (systems heterogeneity), and (2) non-identically distributed data across the network (statistical heterogeneity). In this work, we introduce a framework, FedProx, to tackle heterogeneity in federated networks. FedProx can be viewed as a generalization and re-parametrization of FedAvg, the current state-of-the-art method for federated learning. While this re-parameterization makes only minor modifications to the method itself, these modifications have important ramifications both in theory and in practice. Theoretically, we provide convergence guarantees for our framework when learning over data from non-identical distributions (statistical heterogeneity), and while adhering to device-level systems constraints by allowing each participating device to perform a variable amount of work (systems heterogeneity). Practically, we demonstrate that FedProx allows for more robust convergence than FedAvg across a suite of realistic federated datasets. In particular, in highly heterogeneous settings, FedProx demonstrates significantly more stable and accurate convergence behavior relative to FedAvg---improving absolute test accuracy by 22% on average.

224 citations

Posted Content
TL;DR: A novel algorithm MATCHA is proposed that uses matching decomposition sampling of the base topology to parallelize inter-worker information exchange so as to significantly reduce communication delay and communicates more frequently over critical links such that it can maintain the same convergence rate as vanilla decentralized SGD.
Abstract: This paper studies the problem of error-runtime trade-off, typically encountered in decentralized training based on stochastic gradient descent (SGD) using a given network. While a denser (sparser) network topology results in faster (slower) error convergence in terms of iterations, it incurs more (less) communication time/delay per iteration. In this paper, we propose MATCHA, an algorithm that can achieve a win-win in this error-runtime trade-off for any arbitrary network topology. The main idea of MATCHA is to parallelize inter-node communication by decomposing the topology into matchings. To preserve fast error convergence speed, it identifies and communicates more frequently over critical links, and saves communication time by using other links less frequently. Experiments on a suite of datasets and deep neural networks validate the theoretical analyses and demonstrate that MATCHA takes up to $5\times$ less time than vanilla decentralized SGD to reach the same training loss.

104 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the unique characteristics and challenges of federated learning, provide a broad overview of current approaches, and outline several directions of future work that are relevant to a wide range of research communities.
Abstract: Federated learning involves training statistical models over remote devices or siloed data centers, such as mobile phones or hospitals, while keeping data localized. Training in heterogeneous and potentially massive networks introduces novel challenges that require a fundamental departure from standard approaches for large-scale machine learning, distributed optimization, and privacy-preserving data analysis. In this article, we discuss the unique characteristics and challenges of federated learning, provide a broad overview of current approaches, and outline several directions of future work that are relevant to a wide range of research communities.

2,163 citations

Posted Content
TL;DR: Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
Abstract: Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

1,107 citations

Posted Content
TL;DR: This paper analyzes the convergence of Federated Averaging on non-iid data and establishes a convergence rate of $\mathcal{O}(\frac{1}{T})$ for strongly convex and smooth problems, where $T$ is the number of SGDs.
Abstract: Federated learning enables a large amount of edge computing devices to jointly learn a model without data sharing. As a leading algorithm in this setting, Federated Averaging (\texttt{FedAvg}) runs Stochastic Gradient Descent (SGD) in parallel on a small subset of the total devices and averages the sequences only once in a while. Despite its simplicity, it lacks theoretical guarantees under realistic settings. In this paper, we analyze the convergence of \texttt{FedAvg} on non-iid data and establish a convergence rate of $\mathcal{O}(\frac{1}{T})$ for strongly convex and smooth problems, where $T$ is the number of SGDs. Importantly, our bound demonstrates a trade-off between communication-efficiency and convergence rate. As user devices may be disconnected from the server, we relax the assumption of full device participation to partial device participation and study different averaging schemes; low device participation rate can be achieved without severely slowing down the learning. Our results indicate that heterogeneity of data slows down the convergence, which matches empirical observations. Furthermore, we provide a necessary condition for \texttt{FedAvg} on non-iid data: the learning rate $\eta$ must decay, even if full-gradient is used; otherwise, the solution will be $\Omega (\eta)$ away from the optimal.

919 citations

Journal ArticleDOI
TL;DR: The concept of federated learning (FL) as mentioned in this paperederated learning has been proposed to enable collaborative training of an ML model and also enable DL for mobile edge network optimization in large-scale and complex mobile edge networks, where heterogeneous devices with varying constraints are involved.
Abstract: In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloud-based Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.

895 citations