scispace - formally typeset
Search or ask a question
Author

Anita Ayer

Bio: Anita Ayer is an academic researcher from Victor Chang Cardiac Research Institute. The author has contributed to research in topics: Oxidative stress & Heme. The author has an hindex of 13, co-authored 23 publications receiving 670 citations. Previous affiliations of Anita Ayer include University of New South Wales & University of Sydney.

Papers
More filters
Journal ArticleDOI
TL;DR: The roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmx1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis.
Abstract: Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.

152 citations

Journal ArticleDOI
TL;DR: This review discusses aspects of ROS in relation to replicative ageing in the model organism Saccharomyces cerevisiae, with reference to ROS generated in cells; cellular responses to oxidative stress; and how cells maintain redox homeostasis in different cellular compartments.
Abstract: Ageing cells undergo changes in redox homeostasis and acquire high levels of reactive oxygen species (ROS). Because accumulation of ROS involves a change in redox state of cells, functions that are involved in setting redox and maintaining redox homeostasis are very relevant to an understanding of the possible roles of redox homeostasis and ROS in ageing. This review discusses these aspects of ROS in relation to replicative ageing in the model organism Saccharomyces cerevisiae, with reference to ROS generated in cells; cellular responses to oxidative stress; and how cells maintain redox homeostasis in different cellular compartments. It also considers when ROS generation begins as cells age, which ROS species are relevant to ageing and which cellular compartments and processes may contribute ROS to the ageing process. The discussion also covers the heterogeneity of cells with respect to ROS accumulation at particular cell ages, and the possibility of testing the oxidative theory of ageing in yeast cells.

104 citations

Journal ArticleDOI
28 Feb 2019-Nature
TL;DR: Singlet molecular oxygen, produced by indoleamine 2,3-dioxygenase 1 activity, gives rise to a signalling molecule that regulates arterial relaxation under inflammatory conditions, demonstrating a pathophysiological role for 1O2 in mammals through formation of an amino acid-derived hydroperoxide that regulates vascular tone and blood pressure underinflammatory conditions.
Abstract: Singlet molecular oxygen (1O2) has well-established roles in photosynthetic plants, bacteria and fungi1–3, but not in mammals. Chemically generated 1O2 oxidizes the amino acid tryptophan to precursors of a key metabolite called N-formylkynurenine4, whereas enzymatic oxidation of tryptophan to N-formylkynurenine is catalysed by a family of dioxygenases, including indoleamine 2,3-dioxygenase 15. Under inflammatory conditions, this haem-containing enzyme is expressed in arterial endothelial cells, where it contributes to the regulation of blood pressure6. However, whether indoleamine 2,3-dioxygenase 1 forms 1O2 and whether this contributes to blood pressure control have remained unknown. Here we show that arterial indoleamine 2,3-dioxygenase 1 regulates blood pressure via formation of 1O2. We observed that in the presence of hydrogen peroxide, the enzyme generates 1O2 and that this is associated with the stereoselective oxidation of l-tryptophan to a tricyclic hydroperoxide via a previously unrecognized oxidative activation of the dioxygenase activity. The tryptophan-derived hydroperoxide acts in vivo as a signalling molecule, inducing arterial relaxation and decreasing blood pressure; this activity is dependent on Cys42 of protein kinase G1α. Our findings demonstrate a pathophysiological role for 1O2 in mammals through formation of an amino acid-derived hydroperoxide that regulates vascular tone and blood pressure under inflammatory conditions. Singlet molecular oxygen, produced by indoleamine 2,3-dioxygenase 1 activity, gives rise to a signalling molecule that regulates arterial relaxation under inflammatory conditions.

71 citations

Journal ArticleDOI
TL;DR: More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance, and Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants.
Abstract: The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50°. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H(+)-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance.

65 citations

Journal ArticleDOI
TL;DR: Chronic CoQ(10) supplementation attenuates aspects of diabetic cardiomyopathy, even in a setting of reduced cardiac PI3K protective signaling, and may be an attractive adjunct therapy for diabetic heart failure.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy and Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroPTosis-induced heart damage.
Abstract: Heart disease is the leading cause of death worldwide. A key pathogenic factor in the development of lethal heart failure is loss of terminally differentiated cardiomyocytes. However, mechanisms of cardiomyocyte death remain unclear. Here, we discovered and demonstrated that ferroptosis, a programmed iron-dependent cell death, as a mechanism in murine models of doxorubicin (DOX)- and ischemia/reperfusion (I/R)-induced cardiomyopathy. In canonical apoptosis and/or necroptosis-defective Ripk3−/−, Mlkl−/−, or Fadd−/−Mlkl−/− mice, DOX-treated cardiomyocytes showed features of typical ferroptotic cell death. Consistently, compared with dexrazoxane, the only FDA-approved drug for treating DOX-induced cardiotoxicity, inhibition of ferroptosis by ferrostatin-1 significantly reduced DOX cardiomyopathy. RNA-sequencing results revealed that heme oxygenase-1 (Hmox1) was significantly up-regulated in DOX-treated murine hearts. Administering DOX to mice induced cardiomyopathy with a rapid, systemic accumulation of nonheme iron via heme degradation by Nrf2-mediated up-regulation of Hmox1, which effect was abolished in Nrf2-deficent mice. Conversely, zinc protoporphyrin IX, an Hmox1 antagonist, protected the DOX-treated mice, suggesting free iron released on heme degradation is necessary and sufficient to induce cardiac injury. Given that ferroptosis is driven by damage to lipid membranes, we further investigated and found that excess free iron accumulated in mitochondria and caused lipid peroxidation on its membrane. Mitochondria-targeted antioxidant MitoTEMPO significantly rescued DOX cardiomyopathy, supporting oxidative damage of mitochondria as a major mechanism in ferroptosis-induced heart damage. Importantly, ferrostatin-1 and iron chelation also ameliorated heart failure induced by both acute and chronic I/R in mice. These findings highlight that targeting ferroptosis serves as a cardioprotective strategy for cardiomyopathy prevention.

918 citations

Journal ArticleDOI
21 Apr 2015
TL;DR: In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenase, lipoxygenases, xanthine oxidases, and NADPH oxidases.
Abstract: Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.

558 citations

Journal ArticleDOI
TL;DR: The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.
Abstract: Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

319 citations

Journal ArticleDOI
TL;DR: In response to elevated endogenous and exogenous reactive oxygen species (ROS), Sod1 rapidly relocates into the nucleus, which is important for maintaining genomic stability, and H2O2 is sufficient to promote Sod1 nuclear localization, indicating that it is responding to general ROS rather than Sod1 substrate superoxide.
Abstract: Superoxide dismutase 1 (Sod1) has been known for nearly half a century for catalysis of superoxide to hydrogen peroxide. Here we report a new Sod1 function in oxidative signalling: in response to elevated endogenous and exogenous reactive oxygen species (ROS), Sod1 rapidly relocates into the nucleus, which is important for maintaining genomic stability. Interestingly, H2O2 is sufficient to promote Sod1 nuclear localization, indicating that it is responding to general ROS rather than Sod1 substrate superoxide. ROS signalling is mediated by Mec1/ATM and its effector Dun1/Cds1 kinase, through Dun1 interaction with Sod1 and regulation of Sod1 by phosphorylation at S60, 99. In the nucleus, Sod1 binds to promoters and regulates the expression of oxidative resistance and repair genes. Altogether, our study unravels an unorthodox function of Sod1 as a transcription factor and elucidates the regulatory mechanism for its localization.

312 citations

Journal ArticleDOI
TL;DR: It is proposed that glutathione is essential by its requirement in ISC assembly, but only serves as a thioredoxin backup in cytosolic thiol‐redox maintenance, a model challenging the traditional view of it as prime actor in thiol-redox control.
Abstract: Glutathione contributes to thiol-redox control and to extra-mitochondrial iron–sulphur cluster (ISC) maturation. To determine the physiological importance of these functions and sort out those that account for the GSH requirement for viability, we performed a comprehensive analysis of yeast cells depleted of or containing toxic levels of GSH. Both conditions triggered an intense iron starvation-like response and impaired the activity of extra-mitochondrial ISC enzymes but did not impact thiol-redox maintenance, except for high glutathione levels that altered oxidative protein folding in the endoplasmic reticulum. While iron partially rescued the ISC maturation and growth defects of GSH-depleted cells, genetic experiments indicated that unlike thioredoxin, glutathione could not support by itself the thiol-redox duties of the cell. We propose that glutathione is essential by its requirement in ISC assembly, but only serves as a thioredoxin backup in cytosolic thiol-redox maintenance. Glutathione-high physiological levels are thus meant to insulate its cytosolic function in iron metabolism from variations of its concentration during redox stresses, a model challenging the traditional view of it as prime actor in thiol-redox control.

275 citations