scispace - formally typeset
Search or ask a question
Author

Anja Müller

Bio: Anja Müller is an academic researcher from University of Düsseldorf. The author has contributed to research in topics: Chemokine & Chemokine receptor. The author has an hindex of 18, co-authored 29 publications receiving 8871 citations.

Papers
More filters
Journal ArticleDOI
01 Mar 2001-Nature
TL;DR: It is reported that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases and their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis.
Abstract: Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

5,132 citations

Journal ArticleDOI
TL;DR: The findings provide a new link among staphylococcal colonization, subsequent T-cell recruitment/activation, and pruritus induction in patients with atopic dermatitis, and show that IL-31 may represent a novel target for antipruritic drug development.
Abstract: Background IL-31 is a novel T-cell–derived cytokine that induces severe pruritus and dermatitis in transgenic mice, and signals through a heterodimeric receptor composed of IL-31 receptor A and oncostatin M receptor. Objective To investigate the role of human IL-31 in pruritic and nonpruritic inflammatory skin diseases. Methods The expression of IL-31 was analyzed by quantitative real-time PCR in skin samples of healthy individuals and patients with chronic inflammatory skin diseases. Moreover, IL-31 expression was analyzed in nonlesional skin of atopic dermatitis patients after allergen or superantigen exposure, as well as in stimulated leukocytes. The tissue distribution of the IL-31 receptor heterodimer was investigated by DNA microarray analysis. Results IL-31 was significantly overexpressed in pruritic atopic compared with nonpruritic psoriatic skin inflammation. Highest IL-31 levels were detected in prurigo nodularis, one of the most pruritic forms of chronic skin inflammation. In vivo , staphylococcal superantigen rapidly induced IL-31 expression in atopic individuals. In vitro , staphylococcal enterotoxin B but not viruses or T H 1 and T H 2 cytokines induced IL-31 in leukocytes. In patients with atopic dermatitis, activated leukocytes expressed significantly higher IL-31 levels compared with control subjects. IL-31 receptor A showed most abundant expression in dorsal root ganglia representing the site where the cell bodies of cutaneous sensory neurons reside. Conclusion Our findings provide a new link among staphylococcal colonization, subsequent T-cell recruitment/activation, and pruritus induction in patients with atopic dermatitis. Taken together, these findings show that IL-31 may represent a novel target for antipruritic drug development.

867 citations

Journal ArticleDOI
TL;DR: It is reported that most skin-infiltrating lymphocytes in patients suffering from psoriasis, atopic or allergic-contact dermatitis express CCR10, indicating that CCL27–CCR10 interactions have a pivotal role in T cell–mediated skin inflammation.
Abstract: The skin-associated chemokine CCL27 (also called CTACK, ALP and ESkine) and its receptor CCR10 (GPR-2) mediate chemotactic responses of skin-homing T cells in vitro. Here we report that most skin-infiltrating lymphocytes in patients suffering from psoriasis, atopic or allergic-contact dermatitis express CCR10. Epidermal basal keratinocytes produced CCL27 protein that bound to extracellular matrix, mediated adhesion and was displayed on the surface of dermal endothelial cells. Tumor necrosis factor-α and interleukin-1β induced CCL27 production whereas the glucocorticosteroid clobetasol propionate suppressed it. Circulating skin-homing CLA+ T cells, dermal microvascular endothelial cells and fibroblasts expressed CCR10 on their cell surface. In vivo, intracutaneous CCL27 injection attracted lymphocytes and, conversely, neutralization of CCL27–CCR10 interactions impaired lymphocyte recruitment to the skin leading to the suppression of allergen-induced skin inflammation. Together, these findings indicate that CCL27–CCR10 interactions have a pivotal role in T cell–mediated skin inflammation.

738 citations

Journal ArticleDOI
TL;DR: C cultured primary keratinocytes, dermal fibroblasts, and dermal microvascular endothelial and dendritic cells are major sources of CCL20, and that the expression of this chemokine can be induced by proinflammatory mediators such as TNF-α/IL-1β, CD40 ligand, IFN-γ, or IL-17 are shown.
Abstract: Autoimmunity plays a key role in the immunopathogenesis of psoriasis; however, little is known about the recruitment of pathogenic cells to skin lesions. We report here that the CC chemokine, macrophage inflammatory protein-3 alpha, recently renamed CCL20, and its receptor CCR6 are markedly up-regulated in psoriasis. CCL20-expressing keratinocytes colocalize with skin-infiltrating T cells in lesional psoriatic skin. PBMCs derived from psoriatic patients show significantly increased CCR6 mRNA levels. Moreover, skin-homing CLA+ memory T cells express high levels of surface CCR6. Furthermore, the expression of CCR6 mRNA is 100- to 1000-fold higher on sorted CLA+ memory T cells than other chemokine receptors, including CXCR1, CXCR2, CXCR3, CCR2, CCR3, and CCR5. In vitro, CCL20 attracted skin-homing CLA+ T cells of both normal and psoriatic donors; however, psoriatic lymphocytes responded to lower concentrations of chemokine and showed higher chemotactic responses. Using ELISA as well as real-time quantitative PCR, we show that cultured primary keratinocytes, dermal fibroblasts, and dermal microvascular endothelial and dendritic cells are major sources of CCL20, and that the expression of this chemokine can be induced by proinflammatory mediators such as TNF-alpha/IL-1 beta, CD40 ligand, IFN-gamma, or IL-17. Taken together, these findings strongly suggest that CCL20/CCR6 may play a role in the recruitment of T cells to lesional psoriatic skin.

557 citations

Journal ArticleDOI
TL;DR: The role of chemokines in tumour biology and the development of the host's anti-tumour defence is reviewed and the role of their ligands in the organization of the antitumour immune response is discussed.
Abstract: Chemokines, a superfamily of small cytokine-like molecules, regulate leukocyte transport in the body. In recent years, we have witnessed the transition of immunotherapeutic strategies from the laboratory to the bedside. Here, we review the role of chemokines in tumour biology and the development of the host's anti-tumour defence. We summarize the current knowledge of chemokine-receptor expression by relevant cellular components of the immune system and the role of their ligands in the organization of the antitumour immune response. Finally, we discuss recent findings which indicate that chemokines have therapeutic potential as adjuvants or treatments in antitumour immunotherapy, as well as remaining questions and perspectives for translating experimental evidence into clinical practice.

413 citations


Cited by
More filters
Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration.
Abstract: Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.

12,395 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
TL;DR: It is shown that the MMPs have functions other than promotion of invasion, have substrates other than components of the extracellular matrix, and that they function before invasion in the development of cancer.
Abstract: Matrix metalloproteinases (MMPs) have long been associated with cancer-cell invasion and metastasis. This provided the rationale for clinical trials of MMP inhibitors, unfortunately with disappointing results. We now know, however, that the MMPs have functions other than promotion of invasion, have substrates other than components of the extracellular matrix, and that they function before invasion in the development of cancer. With this knowledge in hand, can we rethink the use of MMP inhibitors in the clinic?

5,860 citations

Journal ArticleDOI
01 Mar 2001-Nature
TL;DR: It is reported that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases and their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis.
Abstract: Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

5,132 citations

Journal ArticleDOI
TL;DR: These functionally polarized cells, and similarly oriented or immature dendritic cells present in tumors, have a key role in subversion of adaptive immunity and in inflammatory circuits that promote tumor growth and progression.

4,728 citations