scispace - formally typeset
Search or ask a question
Author

Anjanapura V. Raghu

Bio: Anjanapura V. Raghu is an academic researcher from Jain University. The author has contributed to research in topics: Hexamethylene diisocyanate & Isophorone diisocyanate. The author has an hindex of 34, co-authored 83 publications receiving 4547 citations. Previous affiliations of Anjanapura V. Raghu include University of Maryland University College & University of Ulsan.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the development in TiO2 nanostructured materials for visible-light driven photocatalysis is presented, and the effects of various parameters on their photocatalytic efficiency, photodegradation of various organic contaminants present in wastewater, and photocatalyst disinfection are delineated.

420 citations

Journal ArticleDOI
TL;DR: In this paper, an organo-inorganic photocatalytic nanocomposite material based on conjugated polymer, polyaniline (PANI) with titanium dioxide (TiO2) nanoparticles has been developed by performing in situ chemical oxidative polymerization of aniline with ammonium persulfate (APS) oxidant in the presence of hydrothermally synthesized TiO2 nanoparticles.

372 citations

Journal ArticleDOI
TL;DR: In this paper, a nanocomposites of waterborne polyurethane (WPU) with functionalized graphene sheets (FGS) were prepared by an in situ method.
Abstract: Nanocomposites of waterborne polyurethane (WPU) with functionalized graphene sheets (FGS) were prepared by an in situ method. The morphology observed by transmission electron microscopy showed that pristine nanosize FGS can be finely dispersed in a WPU matrix so that it can efficiently improve the conductivity of WPU. The modulus improvement by the reinforcing effect of FGS was more evident than our previous results of nanocomposites prepared by a physical mixing method, showing that the interactions between FGS and WPU were improved when made by the in situ method. In addition, the FGS enhanced the crystallization of the soft segment of WPU evidently; however, it reduced that of the hard segment. The thermal degradation of WPU was accelerated by FGS.

281 citations

Journal ArticleDOI
TL;DR: In this article, multi-walled carbon nanotubes (MWCNTs)-core/thiophene polymer-sheath composite nanocables were synthesized by chemical oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) with oxidant (FeCl3) in the presence of cationic surfactant, deceyltrimethyl ammonium bromide (DTAB).
Abstract: Multi-walled carbon nanotubes (MWCNTs)-core/thiophene polymer-sheath composite nanocables were synthesized by chemical oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) with oxidant (FeCl3) in the presence of cationic surfactant, deceyltrimethyl ammonium bromide (DTAB). In the polymerization process, DTAB surfactant molecules were adsorbed on the surface of MWCNTs and forms MWCNTs-DTAB soft template. Upon the addition of EDOT and oxidant, the polymerization take place on the surface of MWCNTs and PEDOT is gradually deposited on the surface of MWCNTs. The resulting MWCNTs-PEDOT nanocomposites have the nanocable structure. Nanocomposites were characterized by HRTEM, FE-SEM, XRD, XPS, TGA, FTIR and PL, respectively. The π-π interactions between PEDOT and MWCNTs enhancing the thermal and electrical properties of the nanocomposites with loading of MWCNTs. The temperature dependence conductivity measurements show that the conductivity of the nanocomposite decrease with a decrease of temperature, and conductivity-temperature relationship is well fit by the quasi-one dimensional variable range hopping mode. The mechanism for the formation of composite nanocables was explained on the basis of self- assembly of micelles. The reported self-assembly strategy for the synthesis of PEDOT-coated MWCNTs in micellar medium is a rapid, versatile, potentially scalable, stable, and making it useful for further exploitation in a varies types of applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1477–1484, 2010

278 citations

Journal ArticleDOI
TL;DR: In this article, a colloidal dispersion of functionalized graphene sheets and waterborne polyurethane (WPU) was used to construct a nanocomposite with enhanced electrical conductivity and thermal resistance.
Abstract: Nanocomposites of waterborne polyurethane (WPU) reinforced with functionalized graphene sheets (FGSs) were effectively prepared by casting from a colloidal dispersion of FGS and WPU, and the morphology and physical properties were examined. The finer aqueous FGS dispersions or WPU with smaller particles yielded nanocomposites with enhanced electrical conductivity and thermal resistance due to finely dispersed FGS. The FGS nucleated the crystallization of the polycaprolactone (PCL) segments in WPU and improved its modulus. However, FGS inhibited crystal growth and deteriorated the tensile properties at high deformation, i.e., tensile strength and elongation at break, because the interaction between FGS and WPU hindered the chain rearrangement of WPU in the nanocomposite.

263 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: Graphene and its derivatives are being studied in nearly every field of science and engineering as mentioned in this paper, and recent progress has shown that the graphene-based materials can have a profound impact on electronic and optoelectronic devices, chemical sensors, nanocomposites and energy storage.

3,118 citations

Journal ArticleDOI
TL;DR: In this paper, the structure, preparation and properties of polymer/graphene nanocomposites are discussed in general along with detailed examples drawn from the scientific literature, and the percolation threshold can be achieved at a very lower filler loading.

2,999 citations

Journal ArticleDOI
TL;DR: Graphene has emerged as a subject of enormous scientific interest due to its exceptional electron transport, mechanical properties, and high surface area, and when incorporated appropriately, these atomically thin carbon sheets can significantly improve physical properties of host polymers at extremely small loading.
Abstract: Graphene has emerged as a subject of enormous scientific interest due to its exceptional electron transport, mechanical properties, and high surface area. When incorporated appropriately, these atomically thin carbon sheets can significantly improve physical properties of host polymers at extremely small loading. We first review production routes to exfoliated graphite with an emphasis on top-down strategies starting from graphite oxide, including advantages and disadvantages of each method. Then solvent- and melt-based strategies to disperse chemically or thermally reduced graphene oxide in polymers are discussed. Analytical techniques for characterizing particle dimensions, surface characteristics, and dispersion in matrix polymers are also introduced. We summarize electrical, thermal, mechanical, and gas barrier properties of the graphene/polymer nanocomposites. We conclude this review listing current challenges associated with processing and scalability of graphene composites and future perspectives f...

2,979 citations