scispace - formally typeset
Search or ask a question
Author

Anju Chadha

Bio: Anju Chadha is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Candida parapsilosis & Enantiomeric excess. The author has an hindex of 30, co-authored 135 publications receiving 2800 citations. Previous affiliations of Anju Chadha include Indian Institute of Science & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an enzymatic, porous silicon (PS) based potentiometric method for estimating triglycerides is reported, where Lipase, an enzyme which hydrolyses triglycerides was immobilised on PS which was prepared from p-type (1 − 0 − 0) crystalline silicon and was thermally oxidized.

42 citations

Journal ArticleDOI
TL;DR: Biocatalytic deracemisation of racemic allylic alcohols by whole cells of Candida parapsilosis ATCC 7330 resulted in the formation of the (R)-enantiomers in high enantiomeric excesses and isolated yields.
Abstract: Biocatalytic deracemisation of racemic allylic alcohols by whole cells of Candida parapsilosis ATCC 7330 resulted in the formation of the (R)-enantiomers in high enantiomeric excesses (up to >99%) and isolated yields (up to 79%).

42 citations

Journal ArticleDOI
TL;DR: Rat lung microsomes were shown to ω-hydroxylate acyclic monoterpene alcohols in the presence of NADPH and O2 and hydroxylation was specific to the C-8 position in geraniol and has a pH optimum of 7.8.

41 citations

Journal ArticleDOI
TL;DR: The absolute configuration of ethyl 3-(2,4-dichlorophenyl)-3-hydroxy propanoate and ethyl 5-phenyl-pent-4-enoate as determined by 1 H NMR using MTPA chloride was found to be ‘ S ’.
Abstract: Deracemisation of aryl and substituted aryl β-hydroxy esters using immobilised whole cells of Candida parapsilosis ATCC 7330 yields the corresponding ( S )-enantiomer in >99% enantiomeric excess and good yield (up to 68%). The absolute configuration of ethyl 3-(2,4-dichlorophenyl)-3-hydroxy propanoate and ethyl 3-hydroxy-5-phenyl-pent-4-enoate as determined by 1 H NMR using MTPA chloride was found to be ‘ S ’. The chemical shifts of the methoxy groups of the two diastereomeric MTPA esters were used as diagnostic signals to determine the absolute configuration.

39 citations


Cited by
More filters
01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

Journal ArticleDOI
TL;DR: An up-to-date review of the literature available on the subject of liquid bio-fuels can be found in this article, which includes information based on the research conducted globally by scientists according to their local socio-cultural and economic situations.

1,948 citations

Journal ArticleDOI
TL;DR: The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature as discussed by the authors, which is the commonly used alcohol in this process, due to its low cost.

1,798 citations

Journal ArticleDOI
TL;DR: In this article, a detailed review has been conducted to highlight different related aspects to the biodiesel industry, including, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodies, the economical viability and finally the future of the future biodiesel.
Abstract: As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available resources that have come to the forefront recently. In this paper, a detailed review has been conducted to highlight different related aspects to biodiesel industry. These aspects include, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodiesel, the economical viability and finally the future of biodiesel. The literature reviewed was selective and critical. Highly rated journals in scientific indexes were the preferred choice, although other non-indexed publications, such as Scientific Research and Essays or some internal reports from highly reputed organizations such as International Energy Agency (IEA), Energy Information Administration (EIA) and British Petroleum (BP) have also been cited. Based on the overview presented, it is clear that the search for beneficial biodiesel sources should focus on feedstocks that do not compete with food crops, do not lead to land-clearing and provide greenhouse-gas reductions. These feedstocks include non-edible oils such as Jatropha curcas and Calophyllum inophyllum , and more recently microalgae and genetically engineered plants such as poplar and switchgrass have emerged to be very promising feedstocks for biodiesel production. It has been found that feedstock alone represents more than 75% of the overall biodiesel production cost. Therefore, selecting the best feedstock is vital to ensure low production cost. It has also been found that the continuity in transesterification process is another choice to minimize the production cost. Biodiesel is currently not economically feasible, and more research and technological development are needed. Thus supporting policies are important to promote biodiesel research and make their prices competitive with other conventional sources of energy. Currently, biodiesel can be more effective if used as a complement to other energy sources.

1,496 citations

Journal ArticleDOI
TL;DR: The carcinogenicity of polycyclic aromatic hydrocarbons (PAHs) is associated with the complexity of the molecule, and with metabolic activation to reactive diol epoxide intermediates and their subsequent covalent binding to critical targets in DNA.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are formed during incomplete combustion. Domestic wood burning and road traffic are the major sources of PAHs in Sweden. In Stockholm, the sum of 14 different PAHs is 100-200 ng/m(3) at the street-level site, the most abundant being phenanthrene. Benzo[a]pyrene (B[a]P) varies between 1 and 2 ng/m(3). Exposure to PAH-containing substances increases the risk of cancer in humans. The carcinogenicity of PAHs is associated with the complexity of the molecule, i.e., increasing number of benzenoid rings, and with metabolic activation to reactive diol epoxide intermediates and their subsequent covalent binding to critical targets in DNA. B[a]P is the main indicator of carcinogenic PAHs. Fluoranthene is an important volatile PAH because it occurs at high concentrations in ambient air and because it is an experimental carcinogen in certain test systems. Thus, fluoranthene is suggested as a complementary indicator to B[a]P. The most carcinogenic PAH identified, dibenzo[a,l]pyrene, is also suggested as an indicator, although it occurs at very low concentrations. Quantitative cancer risk estimates of PAHs as air pollutants are very uncertain because of the lack of useful, good-quality data. According to the World Health Organization Air Quality Guidelines for Europe, the unit risk is 9 X 10(-5) per ng/m(3) of B[a]P as indicator of the total PAH content, namely, lifetime exposure to 0.1 ng/m(3) would theoretically lead to one extra cancer case in 100,000 exposed individuals. This concentration of 0.1 ng/m(3) of B[a]P is suggested as a health-based guideline. Because the carcinogenic potency of fluoranthene has been estimated to be approximately 20 times less than that of B[a]P, a tentative guideline value of 2 ng/m(3) is suggested for fluoranthene. Other significant PAHs are phenanthrene, methylated phenanthrenes/anthracenes and pyrene (high air concentrations), and large-molecule PAHs such as dibenz[a,h]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene (high carcinogenicity). Additional source-specific indicators are benzo[ghi]perylene for gasoline vehicles, retene for wood combustion, and dibenzothiophene and benzonaphthothiophene for sulfur-containing fuels.

1,433 citations