scispace - formally typeset
Search or ask a question
Author

Anjun Qin

Bio: Anjun Qin is an academic researcher from South China University of Technology. The author has contributed to research in topics: Polymerization & Polymer. The author has an hindex of 72, co-authored 397 publications receiving 19834 citations. Previous affiliations of Anjun Qin include Zhejiang University & Hong Kong University of Science and Technology.
Topics: Polymerization, Polymer, Monomer, OLED, Alkyne


Papers
More filters
Journal ArticleDOI
TL;DR: “United the authors stand, United they fall”–Aesop.
Abstract: "United we stand, divided we fall."--Aesop. Aggregation-induced emission (AIE) refers to a photophysical phenomenon shown by a group of luminogenic materials that are non-emissive when they are dissolved in good solvents as molecules but become highly luminescent when they are clustered in poor solvents or solid state as aggregates. In this Review we summarize the recent progresses made in the area of AIE research. We conduct mechanistic analyses of the AIE processes, unify the restriction of intramolecular motions (RIM) as the main cause for the AIE effects, and derive RIM-based molecular engineering strategies for the design of new AIE luminogens (AIEgens). Typical examples of the newly developed AIEgens and their high-tech applications as optoelectronic materials, chemical sensors and biomedical probes are presented and discussed.

2,322 citations

Journal ArticleDOI
TL;DR: In this work, pure stereoisomers of a TPE derivative named 1,2-bis{4-[1-(6-phenoxyhexyl)-4-(1,2,3-triazol)yl]phenyl}-1, 2-diphenylethene (BPHTATPE) are successfully synthesized and both isomers show remarkable AIE effect and high fluorescence quantum yield in the solid state.
Abstract: It has been difficult to decipher the mechanistic issue whether E/Z isomerization is involved in the aggregation-induced emission (AIE) process of a tetraphenylethene (TPE) derivative, due to the difficulty in the synthesis of its pure E and Z conformers. In this work, pure stereoisomers of a TPE derivative named 1,2-bis{4-[1-(6-phenoxyhexyl)-4-(1,2,3-triazol)yl]phenyl}-1,2-diphenylethene (BPHTATPE) are successfully synthesized. Both isomers show remarkable AIE effect (αAIE ≥ 322) and high fluorescence quantum yield in the solid state (ΦF 100%). The conformers readily undergo E/Z isomerization upon exposure to a powerful UV light and treatment at a high temperature (>200 °C). Such conformational change, however, is not observed under normal fluorescence spectrum measurement conditions, excluding the involvement of the E/Z isomerization in the AIE process of the TPE-based luminogen. The molecules of (E)-BPHTATPE self-organize into ordered one-dimensional nanostructures such as microfibers and nanorods that...

529 citations

PatentDOI
TL;DR: A method for detecting pH in a sample solution with a certain pH value comprising contacting the sample solution using a water-soluble tetraphenylethene-cored probe having multiple functionalities of boronic acid and aggregation induced emission (AIE) characteristics, and detecting fluorescence as discussed by the authors.
Abstract: A method of detecting the presence or absence of saccharide or saccharide level in a biological or artificial sample comprising contacting the sample with a water-soluble tetraphenylethene-cored probe having multiple functionalities of boronic acid and aggregation induced emission (AIE) characteristics, and detecting fluorescence. A method for detecting pH in a sample solution with a certain pH value comprising contacting the sample solution with a water-soluble tetraphenylethene-cored probe having multiple functionalities of boronic acid and aggregation induced emission (AIE) characteristics, and detecting fluorescence.

489 citations

Journal ArticleDOI
TL;DR: In this article, nonemissive tetraphenylethene (TPE) 1 and diphenylated derivative 2 were induced to emit intensely by aggregate formation and they were turned on at ∼2.9 and ∼5V and emitted blue lights with maximum luminance of ∼1800 and ∼11000cd∕m2, respectively.
Abstract: Nonemissive tetraphenylethene (TPE) 1 and its diphenylated derivative 2 were induced to emit intensely by aggregate formation. Crystalline aggregates of the dyes emitted bluer lights than their amorphous counterparts. The emissions of the TPE dyes could be switched off and on continuously and reversibly by wetting and dewetting with solvent vapors, respectively, manifesting their ability to optically sense volatile organic compounds. The light-emitting diodes fabricated from 1 and 2 were turned on at ∼2.9 and ∼5V and emitted blue lights with maximum luminance of ∼1800 and ∼11000cd∕m2, respectively.

470 citations

Journal ArticleDOI
TL;DR: Aggregation-induced emission (AIE) is a newly developed phenomenon that is exactly opposite to the aggregation-caused emission quenching effect observed with some conventional luminophores as discussed by the authors.

387 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: In this critical review, recent progress in the area ofAIE research is summarized and typical examples of AIE systems are discussed, from which their structure-property relationships are derived.
Abstract: Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure–property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references).

4,996 citations

Journal ArticleDOI
TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Abstract: The Huisgen 1,3-dipolar cycloaddition reaction of organic azides and alkynes has gained considerable attention in recent years due to the introduction in 2001 of Cu(1) catalysis by Tornoe and Meldal, leading to a major improvement in both rate and regioselectivity of the reaction, as realized independently by the Meldal and the Sharpless laboratories. The great success of the Cu(1) catalyzed reaction is rooted in the fact that it is a virtually quantitative, very robust, insensitive, general, and orthogonal ligation reaction, suitable for even biomolecular ligation and in vivo tagging or as a polymerization reaction for synthesis of long linear polymers. The triazole formed is essentially chemically inert to reactive conditions, e.g. oxidation, reduction, and hydrolysis, and has an intermediate polarity with a dipolar moment of ∼5 D. The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier. In order to understand the reaction in detail, it therefore seems important to spend a moment to consider the structural and mechanistic aspects of the catalysis. The reaction is quite insensitive to reaction conditions as long as Cu(1) is present and may be performed in an aqueous or organic environment both in solution and on solid support.

3,855 citations

Journal ArticleDOI
TL;DR: This review intends to provide an update of work published since then and focuses on the photoluminescence properties of MOFs and their possible utility in chemical and biological sensing and detection.
Abstract: Metal–organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas A very interesting and well-investigated topic is their optical emission properties and related applications Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011 This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection

3,485 citations

Journal ArticleDOI
TL;DR: The restriction of intramolecular rotation is identified as a main cause for the AIE effect and a series of new fluorescent and phosphorescent AIE systems with emission colours covering the entire visible spectral region and luminescence quantum yields up to unity are developed.

3,324 citations