scispace - formally typeset
Search or ask a question
Author

Anker Degn Jensen

Other affiliations: ALFA, Curtin University, Umicore
Bio: Anker Degn Jensen is an academic researcher from Technical University of Denmark. The author has contributed to research in topics: Catalysis & Pyrolysis. The author has an hindex of 55, co-authored 321 publications receiving 12637 citations. Previous affiliations of Anker Degn Jensen include ALFA & Curtin University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, two general routes for bio-oil upgrading have been considered: hydrodeoxygenation (HDO) and zeolite cracking, where zeolites, e.g. HZSM-5, are used as catalysts for the deoxygenization reaction.
Abstract: As the oil reserves are depleting the need of an alternative fuel source is becoming increasingly apparent. One prospective method for producing fuels in the future is conversion of biomass into bio-oil and then upgrading the bio-oil over a catalyst, this method is the focus of this review article. Bio-oil production can be facilitated through flash pyrolysis, which has been identified as one of the most feasible routes. The bio-oil has a high oxygen content and therefore low stability over time and a low heating value. Upgrading is desirable to remove the oxygen and in this way make it resemble crude oil. Two general routes for bio-oil upgrading have been considered: hydrodeoxygenation (HDO) and zeolite cracking. HDO is a high pressure operation where hydrogen is used to exclude oxygen from the bio-oil, giving a high grade oil product equivalent to crude oil. Catalysts for the reaction are traditional hydrodesulphurization (HDS) catalysts, such as Co–MoS2/Al2O3, or metal catalysts, as for example Pd/C. However, catalyst lifetimes of much more than 200 h have not been achieved with any current catalyst due to carbon deposition. Zeolite cracking is an alternative path, where zeolites, e.g. HZSM-5, are used as catalysts for the deoxygenation reaction. In these systems hydrogen is not a requirement, so operation is performed at atmospheric pressure. However, extensive carbon deposition results in very short catalyst lifetimes. Furthermore a general restriction in the hydrogen content of the bio-oil results in a low H/C ratio of the oil product as no additional hydrogen is supplied. Overall, oil from zeolite cracking is of a low grade, with heating values approximately 25% lower than that of crude oil. Of the two mentioned routes, HDO appears to have the best potential, as zeolite cracking cannot produce fuels of acceptable grade for the current infrastructure. HDO is evaluated as being a path to fuels in a grade and at a price equivalent to present fossil fuels, but several tasks still have to be addressed within this process. Catalyst development, understanding of the carbon forming mechanisms, understanding of the kinetics, elucidation of sulphur as a source of deactivation, evaluation of the requirement for high pressure, and sustainable sources for hydrogen are all areas which have to be elucidated before commercialisation of the process.

1,487 citations

Journal ArticleDOI
TL;DR: A review of the published knowledge on the oxy-fuel process can be found in this paper, focusing particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics.

1,042 citations

Journal ArticleDOI
TL;DR: In this article, the effect of fuel characteristics, devolatilization conditions and combustion mode on the oxidation selectivity towards NO and N 2 is evaluated and even under idealized conditions, such as a laminar pulverized-fuel flame, the governing mechanisms for fuel nitrogen conversion are not completely understood.

818 citations

Journal ArticleDOI
TL;DR: In this paper, four groups of catalysts have been tested for hydrodeoxygenation (HDO) of phenol as a model compound of bio-oil, including oxide catalysts, methanol synthesis catalysts and reduced noble metal catalysts.
Abstract: Four groups of catalysts have been tested for hydrodeoxygenation (HDO) of phenol as a model compound of bio-oil, including oxide catalysts, methanol synthesis catalysts, reduced noble metal catalysts, and reduced non-noble metal catalysts. In total, 23 different catalysts were tested at 100 bar H2 and 275 °C in a batch reactor. The experiments showed that none of the tested oxides or methanol synthesis catalysts had any significant activity for phenol HDO under the given conditions, which were linked to their inability to hydrogenate the aromatic ring of phenol. HDO of phenol over reduced metal catalysts could effectively be described by a kinetic model involving a two-step reaction in which phenol initially was hydrogenated to cyclohexanol and then subsequently deoxygenated to cyclohexane. Among reduced noble metal catalysts, ruthenium, palladium, and platinum were all found to be active, with activity decreasing in that order. Nickel was the only active non-noble metal catalyst. For nickel, the effect o...

353 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art of steam reforming of bio-oil and model compounds are presented along with the catalysts and processes investigated in the literature.

352 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2007-Fuel
TL;DR: In this article, the pyrolysis characteristics of three main components (hemicellulose, cellulose and lignin) of biomass were investigated using, respectively, a thermogravimetric analyzer (TGA) with differential scanning calorimetry (DSC) detector and a pack bed.

5,859 citations

Journal ArticleDOI
TL;DR: In this article, the utilization of fly ash in construction, as a low-cost adsorbent for the removal of organic compounds, flue gas and metals, light weight aggregate, mine back fill, road sub-base, and zeolite synthesis is discussed.

2,117 citations

Journal ArticleDOI
TL;DR: This paper presents a new state-of-the-art implementation of the iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Key Laborotary of Catalysis, which automates the very labor-intensive and therefore expensive and therefore time-heavy and expensive process ofalysis.
Abstract: and Fuels Changzhi Li,† Xiaochen Zhao,† Aiqin Wang,† George W. Huber,†,‡ and Tao Zhang*,† †State Key Laborotary of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China ‡Department of Chemical and Biological Engineering, University of WisconsinMadison, Madison, Wisconsin 53706, United States

1,977 citations